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Abstract. We developed an algorithm for separating the non-stochastic contribution to the empirical
dependence of the physicochemical properties of binary solutions on the concentrations of the com-
ponents. The algorithm is based on the different behaviours of stochastic and deterministic coefficients
of Fourier expansions. It was proved that the isolation of a non-additive part of the dependence al-
lows a quantitative description of the contribution of the solvating effects on the system’s energy. In
addition, this isolation is necessary for the analytical continuation of the studied function in the for-
malized area of negative values of concentrations. It was proved that the suggested development
allows separating the stochastic part of the empirical data. We determined the qualitative criteria for
the separation of deterministic and stochastic Fourier harmonics.

We suggested an efficient three-parameter basis for the regressive description of the isobar of the
boiling points of binary solutions. It was proved that the first component of the basis already describes
the greater part of non-stochastic empirical information. We formulated a two-stage algorithm for
the regressive description of the isobar of the boiling point of aqueous-organic solutions. That algo-
rithm can reduce the amount of necessary empirical information. We also calculated the regression
model coefficients for a number of solutions with practical relevance. For most of the investigated
solutions, one component of the three-parameter basis fully describes the empirical information. For
less than 20% of the studied solutions, the regression basis needs to be supplemented with Fourier
harmonics. The number of such harmonics does not exceed two. It was proved that the relative error
of the proposed algorithm does not exceed 2% and can be explained by experimental errors.

Keywords: homogeneous mixture, water, organic solvents, isobar, the boiling point, Fourier

expansion.

INTRODUCTION

The dependence of the composition properties of
solutions has always attracted considerable interest, as
determined by the role of these systems in engineer-
ing and applied chemistry. [1] This interest has gen-
erated a large and growing number of experimental
studies on this [2, 3]. The foundation of modern ideas
about the properties of solutions as thermodynami-
cally equilibrium systems formed by individual com-
ponents and their reaction products was laid by Men-
deleev [4]. In the model of ideal solutions or infinitely
dilute solutions [5], the physicochemical characteris-
tics of the binary system X (n) are bilinear functions
of concentration n and the properties of the individual
components X, X,

X, =Xn+X,(n-1) (1)

where molar concentrations of components n € [0, 1] .
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Physically, the approximation (1) neglects the effects
of interaction of molecules of different components.
However, the accuracy of this approximation is not
sufficient for describing the properties of real systems
in many cases. Thus, for a number of systems, the
boiling point deviation from bilinear Raoul’s law is
fairly high in the extremum [6], which makes the task
of developing methods of accounting for the effects of
the interaction between component molecules in
mixtures.

The modern theory describes the nonlinear effects
in solutions by the mechanism of salvation, which cov-
ers different types of intermolecular interaction and
leads to the disruption of the local (at the nanoscale)
homogeneity of the system [7]. Despite considerable
interest in the description of the solvation process-
es, there is no concept which is capable of explaining
“ab initio” the observed phenomena and predicting
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new phenomena [8]. Numerous methods exist for the
thermodynamic description of [9] and computer sim-
ulations [10, 11]. Even the simplest systems require
knowledge of the chemical potentials of the interaction
of particles, whose parameters are determined from
empirical data. However, these methods provide only
a qualitative description of the phenomena. Therefore,
the practical methods for the quantitative description
of real multicomponent systems do not use the model
building stage, but are based on the direct regression
approximation of empirical data [6, 12]. Error regres-
sion descriptions contain two components with funda-
mentally different minimization methods. Firstly, the
experimental error is in most cases has a stochastic na-
ture. Analyses of the causes of experimental errors in
the measurement of physical and chemical character-
istics of complex equilibrium systems has described in
extensive literature (see ex, [12] and its references).

Significant dispersion of experimental results have
been observed for a number of binary aqueous-organic
solutions [6, 12, 13]. They show a notable stochastic
contribution in empirical results. Not only the reduc-
tion, but the evaluation of experimental error, is a com-
plex task. Therefore, there is a lack of evaluation of
the reliability of experimental data in the most of the
experimental studies of dependence of physicochemi-
cal characteristics of complex systems on its composi-
tion [6, 12, 13]. However, even the calculation of con-
fidence intervals by statistical methods can only de-
termine the lower boundary of integral contribution
of stochastic processes [14]. Thus, this approach does
not allow isolating deterministic and stochastic com-
ponents experimental arrays and can be considered as
only being diagnostic.

Errors which are related to the properties of the
basis set of regression and the precision of the cal-
culation method, have a fundamentally different be-
havior. These errors can be formally made arbitrarily
small by expanding the basis set and optimization of
numerical algorithms. In this case, the method of cal-
culation of regression description errors depends on
its purpose. The common purpose for the regression
model of experimental data is interpolation or extrap-
olation. In this case, the standard methods of error es-
timation based on the correlation coefficient R (and re-
lated characteristics) are not sufficient to the task, be-
cause they get information from experimental points
only. The interpolation errors are not controlled in this
approach. For example, a Lagrange polynomial of de-
gree N — 1 exactly describes empirical array having N
dimensions (formally whereby R = 1) [15] in the ex-
perimental points. However, a high degree polynomial
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demonstrates a sharp dependence on the argument be-
tween the experimental points even when the function
is smooth. The situation is even worse in the presence
of stochastic contribution, when significant errors are
observed even in experimental points. The harmonic
basis set or basis set of Chebyshev polynomials that is
ideologically close to harmonic basis can be considered
as adequate to this system. These basis sets allow min-
imizing the maximum error in all domain. However,
practical application of regression basis sets with large
variable number of parameters is undesirable.

In practice this can be used a closed basis set, which
must satisfy two requirements. First, the parameters
of regression basis set must provide a complete map-
ping of the non-stochastic part of the information. Sec-
ond, the class of functions, where a basis set has been
constructed, must describe the basic properties of the
system. The symmetry properties, which represent the
fundamental characteristics of systems, take a special
place among all properties [17, 18]. The account of the
symmetry properties in the regression basis set regard-
less of the completeness and accuracy of the array al-
lows us to construct empirical description automati-
cally reflected fundamental properties of the studied
systems [19]. Thus, the wording of the symmetry prop-
erties and formation of invariant under these conver-
sions basis set are compulsory steps for constructing
regression descriptions adequate to this system.

Accounting for the properties of geometric sym-
metry (inversion, translational, rotational, chiral etc.)
of individual molecules and permutation symmetry of
atoms in molecule is widely used in chemistry [18, 20].
Additional symmetry, which is related to the transpo-
sition of characteristics and concentrations of individ-
ual components and which is then taken into account
in the work [19], comes into existence in multicompo-
nent systems. In particular, the basis of the regression
must be invariant with respect to simultaneous inter-
change of the characteristics of the components and
their concentrations.

The consideration of symmetry allows us to de-
termine only a class of functions that form a basis set.
The composition of the basis set can be determined by
regression error, completeness, and accuracy of avail-
able empirical information. Consequently, the size of
the optimum basis set has upper and lower boundar-
ies. The upper boundary is determined by size of the
basis, which provides a description of the non-sto-
chastic part. The rise of basis set size over optimum
size not only increases the amount of computation,
but also brings stochastic component to the regres-
sion description. The lower boundary is determined
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from the conditions of complete mapping of deter-
ministic information.

The purpose of this work is to develop methods
for the isolation of stochastic component of empiri-
cal array and to optimize the parameters based on the
regression basis set. The solution of this problem can
be based on analysis of local behavior of empirical ar-
ray or on analysis of entire set of input data as a whole
[21]. The choice between these classes of algorithms is
determined by the amount and analytical properties of
empirical data. The main advantage of the local algo-
rithm is that it is possible to use it for analyzing small
arrays of empirical data. However, this class of algo-
rithms is based on the assumption of local stationary
of second derivative of approximated function in a lo-
cality of each used point. Therefore, as shown in [22],
this algorithm is effective only in case of smooth func-
tions, which significantly reduces the scope of its ap-
plicability. A local algorithm, in particular, is not ap-
plicable for arrays with large stochastic component
with a non-analytic nature.

In this case, an alternative method for separating a
smooth trend from stochastic changes, which is based
on empirical analysis of the global array, will be ad-
equate to the problem. The algorithm for separation
examined dependence on deterministic and stochas-
tic parts is based on the expansion of the function in a
Fourier series [21]:

X(n)=Y b;sin(mmn)+ Y. ¢, cos(mmn).  (2)
m=1 m=0

Here, unlike the equation (1), domain ne [—1,1]

Therefore, the analytic continuation of the function X

(n) to the formal area of negative values of n is

necessary.

An analysis of the rate of convergence of the ex-
pansion (2) allows us to solve this problem. The pro-
posed algorithm is based on the qualitatively different
behavior of the Fourier expansion of dynamic and sto-
chastic functions [21]. It allows not only evaluate, but
also select non-stochastic part of empirical data. Vari-
ous modifications of this algorithm are widely used in
many fields of science and technology [23]. In case of
presence sufficient empirical information, it allows to
select deterministic part of the information even if the
stochastic component has same power [24].

Calculation of M Fourier coefficients of the expan-
sion of functions, which analytic representation is un-
known (in particular — empirical functions), is possi-
ble only when set, at least, M values of functions [21].
Therefore, empirical information allows us to deter-
mine the finite number of harmonics of the expansion
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(2). Only some of those expansions describe a deter-
mined signal. The description of real systems by finite
segment of (2) is justified only when convergence rate
of the expansion is sufficiently rapid. Furthermore,
finding of non-stochastic dependence on background
of stochastic noise requires additional information.
Therefore, effective use of currently available smooth-
ing algorithms in case of growth of stochastic contri-
bution requires an increase of the size of empirical ar-
rays. However, the specific of physicochemical exper-
iments does not allow satisfying this requirement with
rare exceptions. Consequently, the development of al-
gorithms for smoothing arrays of experimental data,
which considers the specifics of the systems studied, is
the aim of the present work. As an example of applica-
tion of the proposed algorithm, description of depen-
dence of the isobars of boiling temperatures of binary
aqueous-organic solutions on concentrations has been
considered. However, the range of applicability of this
algorithm is much broader and includes descriptions
of a wide class of physicochemical characteristics of
homogeneous systems, which are in state of thermo-
dynamic equilibrium.

EXPERIMENTAL

As it was shown in [25], the Fourier components
(2) of continuous function, the first derivative of that
function has discontinuity, decrease with the rate m2.
However, if the function itself has discontinuities, the
terms of the series do not decrease. The physical rea-
son of the function discontinuities appearance is sto-
chastic processes contribution to the observation re-
sults. There are some other discontinuity formation
mechanisms, which are not related to the properties of
the observation arrays. In particular, the function dis-
continuity may appear while its analytical extension
to the formal area of negative concentrations values.
The necessity of this appearance is determined by dif-
ferent definitional domains of the function X (n)and
its Fourier series. For the effective isolation of the de-
terminate function component from the overlaid sto-
chastic noise it is necessary to formulate an algorithm
of analytical extension, which does not cause neither
discontinuity of the function, nor its derivative. Isola-
tion of the non-additive part of the dependency X (n)
allows us to solve the problem for a binary homoge-
neous solution:

AX(n)=X(n)—[X,(m)+X,(1-n)]. 3)
Since the bilinear function (1) has permutable

symmetry, invariant with respect to permutations of
the characteristics of the components and concentra-
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tions, there also should be a non-additive amendment
AX (n)

Since the function X(n) on the boarders of the
definitional domain takes zero values, analytically it
may be extended into the formal area ne[—1,0)as a
continuous odd function with continuous both first and
second derivatives. Therefore, non-stochastic terms of
the Fourier series decrease asymptotically at least as
m~> [25]. This rate of decrease makes the difference
of behavior of non-stochastic and stochastic compo-
nents very sharp. Such a rapid convergence of the Fou-
rier expansion of non-stochastic part of the function
AX (n) leads to the fact, that a small number of terms
gives the main contribution to the non-stochastic part
of the expansion:

M
AX,, (n)= )b, sin(mmn). 4)
m=1

Moreover, since the function AX (n) is an odd one,
the terms of Fourier expansion which contain multi-
pliers cos(nmn) are equal to zero. This effect causes
an additional decrease in the necessary empirical in-
formation.

The coefficients of the sum (4) may be obtained
directly from experimental data. Calculation of the co-
efficients b, is reduced to the summation of a finite
number of terms [21]. The most simple is the formu-
la for calculation of coefficients b,, for equidistant ex-
perimental points on the interval [0, 1]:

K-1
b, = 2 (ﬁj sin (kn_mj &)
K=K K

where K is the number of observation points and
number of coefficients satisfies the condition m < K .
In the expression (5) is taken into account that due to
the boundary conditions on the non-additive amendment
AX (0)=AX (1)=0, the sum (5) of terms with k = 0,
K is equal to zero. If the experimental values obtained
not at equidistant points, the required values of
functions AX (k /K ) can be obtained by interpolation
in case of sufficient density and accuracy of the data.

As it was shown in [21], the partial section (4) of
the Fourier series not only accurately describes the val-
ues of experimental points, but gives the least mean-
squared error of interpolation in the whole domain for
every single value of M. The error of this interpolation
does not exceed the absolute value of the coefficient
b,, at any point [16]. Analysis of convergence rate of
the Fourier expansions of non-stochastic and stochas-
tic components of the function AX(n) allows us to
determine the number of non-stochastic harmonics M,
relying only on the experimental data. Non-analytic be-
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havior of random noises leads to appearance of higher
harmonics in the Fourier expansion. Due to this fact,
the sum (4), which describes the idealized case of ab-
sence of noises, is replaced by the expansion:

AX(n)=AX,, (n)+ Y, b,sin(mmn).  (6)
m=M +1

For higher harmonics with m> M almost uniform
spectrum (the so-called white noise [29]) with infinite
dispersion is observed. In the series (6) where m > M,
arandom signs alternation for b coefficients without
their modulus reduction is observed. Amplitude of sto-
chastic Fourier harmonics varies only due to fluctua-
tions [27]. As an example, Figure 1 shows the depen-
dence of the modules of expansion coefficient (6) of
experimental results [6] on the harmonic number for
the system “ethanol — water”. The interval (m = 1-5),
which has a rapid decrease in the amplitude of the har-
monic as the number of harmonic increases, is obvi-
ous. In contrast to the non-stochastic term, for m > 5
modulus of coefficients b are not reduced, which in-
dicates their stochastic nature.

The weak dependency of modules of stochastic
Fourier coefficients on their numbers leads to the phe-
nomenon when this part of the spectrum parameter y,
defined by the formula:

M+j+k

DI (7

1
Xjk ke
accurate within fluctuations, remains constant in case
of varying lower limit of summation (j = 1, 2, ...,
K — M —1), and the number of carried terms (k = 1,
2,...,K—j—1). The contribution of fluctuations in the
sum (7) reduces with an increasing number of terms
k, which raise requires an increase of the number of
observations K.

A quantitative measure of the stationary of param-
eter x ;, is the relative dispersion

1 K-M-1 _ 5
&y =>‘W\/ > (M -xk ), ®

J=1

where the average value % is determined by the
equation
K-M-1

> Kk (9)

j=1

M K—-M-1

The criterions for the separation of non-stochastic
and stochastic harmonics are small values of disper-
sion (8) for all M.

All the harmonics with numbers exceeding the
limit value M, have no non-stochastic information, but
only show the presence of stochastic noise [26]. The
rejection (smoothing) of those harmonics allows to
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Fig. 1. The dependence of the modulus of the Fourier coef-

ficients of the expansion (4) of non-additive amendment to

boiling point isobar for the system “ethanol —water” |b |
on the harmonic number m

pick a real signal out of background noise. The num-
ber of experimental data points should be sufficient to
describe deterministic signal and to analyze stationary
of parameter ) , . If K<M, the amount of experimental
data does not allow the investigated dependence AX (n)
to be described, even with the absence of stochastic
noise. The value K = M defines the minimum set of
statistical information, which is necessary to calcu-
late a set of coefficientsd, , expressing the dependence
AX,, (n) inthe absence of noise. However, an ideal ex-
periment cannot be practically implemented. Eventu-
ally, data smoothing is possible in case of K > M, how-
ever, due to fluctuations, it is efficient when K ~ 5M

. In reality, this number of experimental points is usu-
ally unavailable, which restricts the applications of
this algorithm to the analysis of physicochemical sys-
tems. For example, as can be seen from Figure 1, the
limit of stochastic overtones is determined by condi-
tion M = 5 and therefore, the number of experimental
data for effective smoothing should be not less than
the value K ~ 25-30. However, empirical arrays rarely
meet this requirement [6, 12, 13]. Thereupon, the use
of the algorithm for description of non-additive cor-
rection term, which is based on the expansion of func-
tion AX to a series (4), does not usually allow to iden-
tify the deterministic part of the empirical array and to
smooth it effectively.

An algorithm for the smoothing of real experimen-
tal data cannot be universal, but it should be based on
the consideration of the symmetry properties of the
studied systems. As shown in [19], the isolation of the
additive part (1) of empirical function not only allows
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us to avoid the discontinuities of the function and its
derivatives, but also makes it possible to build a re-
gression description, which considers the symmetry
properties of a homogeneous system.

The regressive description algorithm of the deter-
minate part of the information proposed in [19, 28] al-
lows us to solve that problem. It is based on the con-
sideration of symmetrical system properties, which
provides an opportunity to isolate the stochastic con-
tribution to empirical arrays, even with a lack of in-
formation. A modified algorithm is built up based on
the description of the main determinate contribution
AX , not a harmonic (4), but permutatively invariant
function, defined by the described characteristic. Re-
gression basis isotherms of density, dynamic viscosity,
surface tension coefficient and refraction coefficient
were obtained in [19]. A three-parameter basis set for
description of boiling temperature isobars, which was
obtained in [28], has the following form:

1—exp(—on) N

T 1—exp(-0)
AT, =AT, -sin— . .
2 1 arctanl0’(n—n,) |[n—mn,
+| =+
T 1-n,
(10)

Algorithm for calculation of the parameters of per-
mutative invariant regression AT, o, u n, has been for-
mulated in previous study [28].

Fourier expansion (6) is constructed only for the
difference 67 = AT — AT, . Since the majority of the
determinate information displayed by the function
AT,,,, number of deterministic harmonics in the ex-
pansion of the difference 87 is small and, according
to the results of the calculations, the actual experimen-
tal arrays [6, 12, and 13] allow us to conduct an effec-
tive description and smoothing.

RESULTS AND DISCUSSION

The presented algorithm is implemented in the
shell “Maple V Power Edition”. The calculation re-
sults of non-stochastic and stochastic contribution to
the empirical dependences of boiling temperatures of
some aqueous-organic solvents are given in the table.
Boundary deterministic harmonic M is calculated from
the condition €,, =0.1. Data in the table are arranged
in order of decreasing of the number M and disper-
sion €,,. The error of regression description for non-
additive amendment can be described by a root-mean-
square error, which can be defined as follow:

o=

1 U R £\2
—’—M(M—l)\/,-z:’(AZ —ATF) (1)
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Table. Calculation results of non-stochastic and stochastic contributions to empirical dependences of boiling temperatures

of aqueous-organic solutions. M is the number of non-stochastic harmonics of expansion function 37; ¢,, is dispersion

of  parameter; ¢ and ¢, are absolute and normalized to the maximum amendments of three-parameter approximation
respectively; o, is normalized root-mean-square error of approximation with M non-stochastic harmonics

Organic solvent M g, c ., o,
Formic acid 2 0.089 0.133 0.0190 0.0094
Butanone 2 0.088 0.317 0.0138 0.0087
Isobutanol 2 0.063 1.103 0.0759 0.0231
1,4-Dioxane 1 0.082 0.739 0.0577 0.0211
Propionic acid 1 0.071 0.565 0.0195 0.0107
Allyl alcohol 1 0.065 0.254 0.0245 0.0057
Ethanol 0 0.097 0.064 0.0051 0.0051
1-Butanol 0 0.091 0.669 0.0424 0.0424
Furfurol 0 0.088 2.065 0.0423 0.0423
Methanol 0 0.083 0.031 0.0027 0.0027
Acetonitrile 0 0.077 0.038 0.0025 0.0025
Isopropanol 0 0.073 0.133 0.0087 0.0087
Cyclopentanol 0 0.071 0.621 0.0280 0.0280
Acetone 0 0.069 0.402 0.0170 0.0170
Butenone 0 0.067 0.330 0.0205 0.0205
Butyric acid 0 0.060 0.122 0.0035 0.0035
Ethylene glycol 0 0.057 0.087 0.0017 0.0017
1-Propapanol 0 0.055 0.386 0.0340 0.0340
Acetic acid 0 0.053 0.031 0.0062 0.0062
Dimethylformamide 0 0.049 0.176 0.0120 0.0120
Ethyl acetate 0 0.031 0.397 0.0140 0.0140

where AT and AT” are regressive and experimental
values of non-additive error respectively, n, is the
solvent concentration.

Absolute and normalized to the maximum amend-
ments A7, of root-mean-square errors of invari-
ant approximation (10) (c and o, respectively) are
shown. The last column shows the normalized root-
mean-square error of approximation in case of con-
sideration of non-stochastic terms of the Fourier ex-
pansion (11). Of course, in the absence of the Fouri-
er expansion of the function of non-stochastic terms
(M=0) 0,=0,

CONCLUSION

According to the results of the calculations for
most of the investigated water-organic solutions, the
invariant approximation (11) completely describes
the deterministic part of the empirical results. An ex-
ample of dependence 87, (n), which only contains
a stochastic component, is shown in Figure 2. For
some systems, the approximation (10) does not ful-
ly describe the empirical data and can be refined by
taking into account the non-stochastic harmonics of
function 67, , the value of which does not exceed two
for all investigated solutions. Due to this fact, a very

limited amount of empirical information allows us to
construct an adequate description of the equilibrium
binary systems. The accuracy of this description de-
pends only on random experimental errors. An ex-
ample of dependence 67, (n), which contains a non-
stochastic component, is shown in Figure 3. The con-
sideration of non-stochastic harmonics in the Fourier
expansion of function 87, (n) allows us to reduce the
relative error of the regression to values in 2—3 times,
which does not exceed 2x1072. Further reduction of
this error can only be achieved by reducing stochas-
tic experimental errors.

In the presence of sufficient empirical information,
the description of homogeneous solutions, based on
the direct Fourier expansion of the non-additive part
of dependence 7'(n) or on the preliminary allocation
of the approximation (10), are both possible. The sec-
ond algorithm has demonstrated its efficiency in the
presence of a sufficient amount of experimental data
because it greatly reduces the amount of computation.
It should be noted that the range of applicability of the
proposed algorithm is much broader and includes the
description of a wide class of physical and chemical
properties of homogeneous systems in a state of ther-
modynamic equilibrium.
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Fig. 2. Dependence of the difference 87, = AT, (n)— AT,
on concentration of methanol in a “methanol-water” mixture.
This dependence does not include a non-stochastic compo-

nent
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AnHoTanus. [TocTpoeH aaropuT™ BBIACICHUS JICTEPMUHHUPOBAHHOTO BKJIAJa B OMIIUPUYCCKUC
3aBUCHUMOCTH (I)I/ISI/IKO-XI/IMI/I‘-ICCKI/IX CBOWCTB 6I/IHapHBIX BOAHO-OPraHUYCCKUX paCTBOPOB OT KOHIICH-
Tpalyu KOMIIOHEHTOB. [Toka3aHo, 4TO BbIIe/IeHHE HEAIMTHBHON YaCTH 3aBUCUMOCTH (DU3UKO-XHU-
MHUYECKUX XapaKTEPUCTHK OT KOHIIEHTPALUH KOMIIOHEHTOB MO3BOJISIET CHOPMYIUPOBATH aJITOPUTM
AHATUTHYECKOTO TIPOIODKEHISI B (POpPMabHYIO 00JIACTh OTPHIIATEIBHBIX KOHIICHTPAIUI ¢ Hempe-
PBIBHBIME (DYHKITHSIMH, & TAKXKE TEPBOH M BTOPOW MPou3BOIHBIMU. C(HOPMYITUPOBAHBI KOIHYECT-
BCHHbBIC KPUTEPHU PA3ACIICHUA CTOXAaCTUICCKUX U JUHAMUYCCKUX NAPMOHHUK B TpeXnapaMeTpuieC-
KOE€ PErPECCHOHHOC OMMCAHKE U300ap TEMITEPaTyPbl KATICHHS OMHAPHBIX pacTBOPoB. Chopmynupo-
BaHbl METOJIbl ONTHUMH3ALNU ANTOPUTMA CIIAKHUBAHHS SMIHPUUECKUX JAHHBIX, YMEHbBIIAIONIHE
obobeM Heobxoxumoit uHpopmaruu. [TocTpoeH 6a3uc perpecCHOHHOrO ONMHMCAHHS 3aBHCUMOCTH
TEMIEPaTyphl KUICHUSI OMHAPHBIX BOJHO-OPTAHUYCCKUX PACTBOPOB OT COCTaBa, IMO3BOJIIOIIUI
y4ecTh OCHOBHOHM BKJIAJl B JCTCPMUHUPOBAHHYIO YaCTh SMIHPUUCCKON MHpopMarmu. s psaa
PacTBOPOB pacCUMTaH CTOXACTHMYCCKHUI BKIIAJ B SMIUpPUYECKHE MaHHbIC. [loka3aHo, 4TO onimbka
MPEJIOKECHHOW PErpeCCHOHHON MOJCITH HE MPEBhIIIacT 2 % 1 OMPEACISIETCS TOIBKO IKCIIEPHUMEH-
TaJbHBIMH TIOTPELTHOCTSIMH.

KiroueBrble ¢ji0Ba: TOMOIeHHEBIC CMECH, BOla, OPraHNvICCKUC PACTBOPUTCIIN, I/I306apLI, TeMIIepary-
pa KUIICHUs, pPa3JIOKECHUEC CDpre.
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