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Abstract. We developed an algorithm for separating the non-stochastic contribution to the empirical 
dependence of the physicochemical properties of binary solutions on the concentrations of the com-
ponents. The algorithm is based on the different behaviours of stochastic and deterministic coeffi cients 
of Fourier expansions.  It was proved that the isolation of a non-additive part of the dependence al-
lows a quantitative description of the contribution of the solvating effects on the system’s energy. In 
addition, this isolation is necessary for the analytical continuation of the studied function in the for-
malized area of negative values of concentrations. It was proved that the suggested development 
allows separating the stochastic part of the empirical data. We determined the qualitative criteria for 
the separation of deterministic and stochastic Fourier harmonics.
We suggested an effi cient three-parameter basis for the regressive description of the isobar of the 
boiling points of binary solutions. It was proved that the fi rst component of the basis already describes 
the greater part of non-stochastic empirical information. We formulated a two-stage algorithm for 
the regressive description of the isobar of the boiling point of aqueous-organic solutions. That algo-
rithm can reduce the amount of necessary empirical information. We also calculated the regression 
model coeffi cients for a number of solutions with practical relevance. For most of the investigated 
solutions, one component of the three-parameter basis fully describes the empirical information. For 
less than 20% of the studied solutions, the regression basis needs to be supplemented with Fourier 
harmonics. The number of such harmonics does not exceed two. It was proved that the relative error 
of the proposed algorithm does not exceed 2% and can be explained by experimental errors.

Keywords: homogeneous mixture, water, organic solvents, isobar, the boiling point, Fourier 
expansion.

INTRODUCTION
The dependence of the composition properties of 

solutions has always attracted considerable interest, as 
determined by the role of these systems in engineer-
ing and applied chemistry. [1] This interest has gen-
erated a large and growing number of experimental 
studies on this [2, 3]. The foundation of modern ideas 
about the properties of solutions as thermodynami-
cally equilibrium systems formed by individual com-
ponents and their reaction products was laid by Men-
deleev [4]. In the model of ideal solutions or infi nitely 
dilute solutions [5], the physicochemical characteris-
tics of the binary system X n( ) are bilinear functions 
of concentration n and the properties of the individual 
components X X1 2,
 X X n X na = + -1 2 1( )  (1)

where molar concentrations of components n Œ[ ]0 1,  . 

Physically, the approximation (1) neglects the effects 
of interaction of molecules of different components. 
However, the accuracy of this approximation is not 
suffi cient for describing the properties of real systems 
in many cases. Thus, for a number of systems, the 
boiling point deviation from bilinear Raoul’s law is 
fairly high in the extremum [6], which makes the task 
of developing methods of accounting for the effects of 
the interaction between component molecules in 
mixtures. 

The modern theory describes the nonlinear effects 
in solutions by the mechanism of salvation, which cov-
ers different types of intermolecular interaction and 
leads to the disruption of the local (at the nanoscale) 
homogeneity of the system [7]. Despite considerable 
interest in the description of the solvation process-
es, there is no concept which is capable of explaining 
“ab initio” the observed phenomena and predicting 
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new phenomena [8]. Numerous methods exist for the 
thermodynamic description of [9] and computer sim-
ulations [10, 11]. Even the simplest systems require 
knowledge of the chemical potentials of the interaction 
of particles, whose parameters are determined from 
empirical data. However, these methods provide only 
a qualitative description of the phenomena. Therefore, 
the practical methods for the quantitative description 
of real multicomponent systems do not use the model 
building stage, but are based on the direct regression 
approximation of empirical data [6, 12]. Error regres-
sion descriptions contain two components with funda-
mentally different minimization methods. Firstly, the 
experimental error is in most cases has a stochastic na-
ture. Analyses of the causes of experimental errors in 
the measurement of physical and chemical character-
istics of complex equilibrium systems has described in 
extensive literature (see ex, [12] and its references).

Signifi cant dispersion of experimental results have 
been observed for a number of binary aqueous-orga nic 
solutions [6, 12, 13]. They show a notable stochastic 
contribution in empirical results. Not only the reduc-
tion, but the evaluation of experimental error, is a com-
plex task. Therefore, there is a lack of evaluation of 
the reliability of experimental data in the most of the 
experimental studies of dependence of physicochemi-
cal characteristics of complex systems on its composi-
tion [6, 12, 13]. However, even the calculation of con-
fi dence intervals by statistical methods can only de-
termine the lower boundary of integral contribution 
of stochastic processes [14]. Thus, this approach does 
not allow isolating deterministic and stochastic com-
ponents experimental arrays and can be considered as 
only being diagnostic.

Errors which are related to the properties of the 
basis set of regression and the precision of the cal-
culation method, have a fundamentally different be-
havior. These errors can be formally made arbitrarily 
small by expanding the basis set and optimization of 
numerical algorithms. In this case, the method of cal-
culation of regression description errors depends on 
its purpose. The common purpose for the regression 
model of experimental data is interpolation or extrap-
olation. In this case, the standard methods of error es-
timation based on the correlation coeffi cient R (and re-
lated characteristics) are not suffi cient to the task, be-
cause they get information from experimental points 
only.  The interpolation errors are not controlled in this 
approach.  For example, a Lagrange polynomial of de-
gree N – 1 exactly describes empirical array having N 
dimensions (formally whereby R = 1) [15] in the ex-
perimental points. However, a high degree polynomial 

demonstrates a sharp dependence on the argument be-
tween the experimental points even when the function 
is smooth. The situation is even worse in the presence 
of stochastic contribution, when signifi cant errors are 
observed even in experimental points.  The harmonic 
basis set or basis set of Chebyshev polynomials that is 
ideologically close to harmonic basis can be considered 
as adequate to this system. These basis sets allow min-
imizing the maximum error in all domain. However, 
practical application of regression basis sets with large 
variable number of parameters is undesirable.

In practice this can be used a closed basis set, which 
must satisfy two requirements.  First, the parameters 
of regression basis set must provide a complete map-
ping of the non-stochastic part of the information. Sec-
ond, the class of functions, where a basis set has been 
constructed, must describe the basic properties of the 
system. The symmetry properties, which represent the 
fundamental characteristics of systems, take a special 
place among all properties [17, 18]. The account of the 
symmetry properties in the regression basis set regard-
less of the completeness and accuracy of the array al-
lows us to construct empirical description automati-
cally refl ected fundamental properties of the studied 
systems [19]. Thus, the wording of the symmetry prop-
erties and formation of invariant under these conver-
sions basis set are compulsory steps for constructing 
regression descriptions adequate to this system. 

Accounting for the properties of geometric sym-
metry (inversion, translational, rotational, chiral etc.) 
of individual molecules and permutation symmetry of 
atoms in molecule is widely used in chemistry [18, 20]. 
Additional symmetry, which is related to the transpo-
sition of characteristics and concentrations of individ-
ual components and which is then taken into account 
in the work [19], comes into existence in multicompo-
nent systems. In particular, the basis of the regression 
must be invariant with respect to simultaneous inter-
change of the characteristics of the components and 
their concentrations.

The consideration of symmetry allows us to de-
termine only a class of functions that form a basis set. 
The composition of the basis set can be determined by 
regression error, completeness, and accuracy of avail-
able empirical information. Consequently, the size of 
the optimum basis set has upper and lower boundar-
ies. The upper boundary is determined by size of the 
basis, which provides a description of the non-sto-
chastic part. The rise of basis set size over optimum 
size not only increases the amount of computation, 
but also brings stochastic component to the regres-
sion description. The lower boundary is determined 
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from the conditions of complete mapping of deter-
ministic information.

The purpose of this work is to develop methods 
for the isolation of stochastic component of empiri-
cal array and to optimize the parameters based on the 
regression basis set. The solution of this problem can 
be based on analysis of local behavior of empirical ar-
ray or on analysis of entire set of input data as a whole 
[21]. The choice between these classes of algorithms is 
determined by the amount and analytical properties of 
empirical data. The main advantage of the local algo-
rithm is that it is possible to use it for analyzing small 
arrays of empirical data. However, this class of algo-
rithms is based on the assumption of local stationary 
of second derivative of approximated function in a lo-
cality of each used point. Therefore, as shown in [22], 
this algorithm is effective only in case of smooth func-
tions, which signifi cantly reduces the scope of its ap-
plicability. A local algorithm, in particular, is not ap-
plicable for arrays with large stochastic component 
with a non-analytic nature.

In this case, an alternative method for separating a 
smooth trend from stochastic changes, which is based 
on empirical analysis of the global array, will be ad-
equate to the problem. The algorithm for separation 
examined dependence on deterministic and stochas-
tic parts is based on the expansion of the function in a 
Fourier series [21]:

 X n b mn c mni i
mm

( ) sin( ) cos( ).= +
=

•

=

•

ÂÂ p p
01

 (2)

Here, unlike the equation (1), domain n Œ -[ ]1 1,   
Therefore, the analytic continuation of the function X 
(n) to the formal area of negative values of n is 
necessary.

An analysis of the rate of convergence of the ex-
pansion (2) allows us to solve this problem. The pro-
posed algorithm is based on the qualitatively different 
behavior of the Fourier expansion of dynamic and sto-
chastic functions [21]. It allows not only evaluate, but 
also select non-stochastic part of empirical data. Vari-
ous modifi cations of this algorithm are widely used in 
many fi elds of science and technology [23]. In case of 
presence suffi cient empirical information, it allows to 
select deterministic part of the information even if the 
stochastic component has same power [24].

Calculation of M Fourier coeffi cients of the expan-
sion of functions, which analytic representation is un-
known (in particular – empirical functions), is possi-
ble only when set, at least, M values of functions [21]. 
Therefore, empirical information allows us to deter-
mine the fi nite number of harmonics of the expansion 

(2). Only some of those expansions describe a deter-
mined signal. The description of real systems by fi nite 
segment of (2) is justifi ed only when convergence rate 
of the expansion is suffi ciently rapid. Furthermore, 
fi nding of non-stochastic dependence on background 
of stochastic noise requires additional information. 
Therefore, effective use of currently available smooth-
ing algorithms in case of growth of stochastic contri-
bution requires an increase of the size of empirical ar-
rays. However, the specifi c of physicochemical exper-
iments does not allow satisfying this requirement with 
rare exceptions. Consequently, the development of al-
gorithms for smoothing arrays of experimental data, 
which considers the specifi cs of the systems studied, is 
the aim of the present work. As an example of applica-
tion of the proposed algorithm, description of depen-
dence of the isobars of boiling temperatures of binary 
aqueous-organic solutions on concentrations has been 
considered. However, the range of applicability of this 
algorithm is much broader and includes descriptions 
of a wide class of physicochemical characteristics of 
homogeneous systems, which are in state of thermo-
dynamic equilibrium.

EXPERIMENTAL
As it was shown in [25], the Fourier components 

(2) of continuous function, the fi rst derivative of that 
function has discontinuity, decrease with the rate m–2.  
However, if the function itself has discontinuities, the 
terms of the series do not decrease. The physical rea-
son of the function discontinuities appearance is sto-
chastic processes contribution to the observation re-
sults. There are some other discontinuity formation 
mechanisms, which are not related to the properties of 
the observation arrays. In particular, the function dis-
continuity may appear while its analytical extension 
to the formal area of negative concentrations values. 
The necessity of this appearance is determined by dif-
ferent defi nitional domains of the function X n( ) and 
its Fourier series. For the effective isolation of the de-
terminate function component from the overlaid sto-
chastic noise it is necessary to formulate an algorithm 
of analytical extension, which does not cause neither 
discontinuity of the function, nor its derivative. Isola-
tion of the non-additive part of the dependency X n( )  
allows us to solve the problem for a binary homoge-
neous solution:
 DX n X n X n X n( ) ( ) [ ( ) ( )]= - + -1 2 1 . (3)

Since the bilinear function (1) has permutable 
symmetry, invariant with respect to permutations of 
the characteristics of the components and concentra-
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tions, there also should be a non-additive amendment 
DX n( )  

Since the function X n( )  on the boarders of the 
defi nitional domain takes zero values, analytically it 
may be extended into the formal area n Œ -[ , )1 0 as a 
continuous odd function with continuous both fi rst and 
second derivatives. Therefore, non-stochastic terms of 
the Fourier series decrease asymptotically at least as 
m–3 [25]. This rate of decrease makes the difference 
of behavior of non-stochastic and stochastic compo-
nents very sharp. Such a rapid convergence of the Fou-
rier expansion of non-stochastic part of the function  
DX n( )  leads to the fact, that a small number of terms 
gives the main contribution to the non-stochastic part 
of the expansion:

 DX n b mndet m
m

M

( ) sin( )=
=

Â p
1

. (4)

Moreover, since the function  DX n( )  is an odd one, 
the terms of Fourier expansion which contain multi-
pliers cos pmn( )  are equal to zero. This effect causes 
an additional decrease in the necessary empirical in-
formation. 

The coeffi cients of the sum (4) may be obtained 
directly from experimental data. Calculation of the co-
effi cients bm is reduced to the summation of a fi nite 
number of terms [21]. The most simple is the formu-
la for calculation of coeffi cients bm for equidistant ex-
perimental points on the interval [0, 1]:

 b
K

X k
K

k m
Km

k

K

= Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃=

-

Â2
1

1

D sin p  (5)

where K is the number of observation points and 
number of coeffi cients satisfi es the condition m K£ .  
In the expression (5) is taken into account that due to 
the boundary conditions on the non-additive amendment 
D DX X0 1 0( ) = ( ) = , the sum (5) of terms with k = 0, 
K is equal to zero. If the experimental values obtained 
not at equidistant points, the required values of 
functions DX k K/( ) can be obtained by interpolation 
in case of suffi cient density and accuracy of the data.

As it was shown in [21], the partial section (4) of 
the Fourier series not only accurately describes the val-
ues of experimental points, but gives the least mean-
squared error of interpolation in the whole domain for 
every single value of M. The error of this interpolation 
does not exceed the absolute value of the coeffi cient  
bM  at any point [16]. Analysis of convergence rate of 
the Fourier expansions of non-stochastic and stochas-
tic components of the function  DX n( )  allows us to 
determine the number of non-stochastic harmonics M, 
relying only on the experimental data. Non-analytic be-

havior of random noises leads to appearance of higher 
harmonics in the Fourier expansion. Due to this fact, 
the sum (4), which describes the idealized case of ab-
sence of noises, is replaced by the expansion: 

 D DX n X n b mndet m
m M

( ) ( ) sin( ).= +
= +

•

Â p
1

 (6)

For higher harmonics with m> M almost uniform 
spectrum (the so-called white noise [29]) with infi nite 
dispersion is observed. In the series (6) where m > M, 
a random signs alternation for bm coeffi cients without 
their modulus reduction is observed. Amplitude of sto-
chastic Fourier harmonics varies only due to fl uctua-
tions [27]. As an example, Figure 1 shows the depen-
dence of the modules of expansion coeffi cient (6) of 
experimental results [6] on the harmonic number for 
the system “ethanol – water”. The interval (m = 1–5), 
which has a rapid decrease in the amplitude of the har-
monic as the number of harmonic increases, is obvi-
ous. In contrast to the non-stochastic term, for m > 5 
modulus of coeffi cients bm are not reduced, which in-
dicates their stochastic nature.

The weak dependency of modules of stochastic 
Fourier coeffi cients on their numbers leads to the phe-
nomenon when this part of the spectrum parameter χ, 
defi ned by the formula:

 c jk m
m M j

M j k

k
b=

= +

+ +

Â1 2 , (7)

accurate within fl uctuations, remains constant in case 
of varying lower limit of summation (j = 1, 2, …, 
K – M – 1), and the number of carried terms (k = 1, 
2,…, K – j – 1). The contribution of fl uctuations in the 
sum (7) reduces with an increasing number of terms 
k, which raise requires an increase of the number of 
observations K.

A quantitative measure of the stationary of param-
eter c jk   is the relative dispersion 

 e
c

c cM j K j
j

K M

M
M= -( )- -

=

- -

Â1
1

2

1

1

, ,  (8)

where the average value c  is determined by the 
equation 

  c cM
K M j K j

j

K M

=
- - - -

=

- -

Â1
1 1

1

1

, . (9)

The criterions for the separation of non-stochastic 
and stochastic harmonics are small values of disper-
sion (8) for all M.

All the harmonics with numbers exceeding the 
limit value M, have no non-stochastic information, but 
only show the presence of stochastic noise [26]. The 
rejection (smoothing) of those harmonics allows to 

REGRESSION ANALYSIS OF ISOBAR BOILING POINT OF WATER-ORGANIC BINARY MIXTURES



286 КОНДЕНСИРОВАННЫЕ СРЕДЫ И МЕЖФАЗНЫЕ ГРАНИЦЫ, ТОМ 19, № 2, 2017

pick a real signal out of background noise. The num-
ber of experimental data points should be suffi cient to 
describe deterministic signal and to analyze stationary 
of parameter c jk . If K<M, the amount of experimental 
data does not allow the investigated dependence DX n( ) 
to be described, even with the absence of stochastic 
noise.  The value K = M defi nes the minimum set of 
statistical information, which is necessary to calcu-
late a set of coeffi cientsbm, expressing the dependence 
DX ndet ( ) in the absence of noise. However, an ideal ex-
periment cannot be practically implemented.  Eventu-
ally, data smoothing is possible in case of K > M, how-
ever, due to fl uctuations, it is effi cient when K M� 5
. In reality, this number of experimental points is usu-
ally unavailable, which restricts the applications of 
this algorithm to the analysis of physicochemical sys-
tems. For example, as can be seen from Figure 1, the 
limit of stochastic overtones is determined by condi-
tion M = 5 and therefore, the number of experimental 
data for effective smoothing should be not less than 
the value K ~ 25–30. However, empirical arrays rarely 
meet this requirement [6, 12, 13]. Thereupon, the use 
of the algorithm for description of non-additive cor-
rection term, which is based on the expansion of func-
tion DX  to a series (4), does not usually allow to iden-
tify the deterministic part of the empirical array and to 
smooth  it effectively.

An algorithm for the smoothing of real experimen-
tal data cannot be universal, but it should be based on 
the consideration of the symmetry properties of the 
studied systems. As shown in [19], the isolation of the 
additive part (1) of empirical function not only allows 

us to avoid the discontinuities of the function and its 
derivatives, but also makes it possible to build a re-
gression description, which considers the symmetry 
properties of a homogeneous system.

The regressive description algorithm of the deter-
minate part of the information proposed in [19, 28] al-
lows us to solve that problem. It is based on the con-
sideration of symmetrical system properties, which 
provides an opportunity to isolate the stochastic con-
tribution to empirical arrays, even with a lack of in-
formation. A modifi ed algorithm is built up based on 
the description of the main determinate contribution 
DX , not a harmonic (4), but permutatively invariant 
function, defi ned by the described characteristic. Re-
gression basis isotherms of density, dynamic viscosity, 
surface tension coeffi cient and refraction coeffi cient 
were obtained in [19]. A three-parameter basis set for 
description of boiling temperature isobars, which was 
obtained in [28], has the following form: 

 D DT T

n

n ninv e
e

= ◊

- -
- -

+

+ +
-È

Î
Í
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exp( )
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˚
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Í
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n

e

e1

.

  (10)
Algorithm for calculation of the parameters of per-

mutative invariant regression DTe , a  и ne  has been for-
mulated in previous study [28]. 

Fourier expansion (6) is constructed only for the 
difference dT T Tinv= -D D . Since the majority of the 
determinate information displayed by the function 
DTinv , number of deterministic harmonics in the ex-
pansion of the difference dT  is small and, according 
to the results of the calculations, the actual experimen-
tal arrays [6, 12, and 13] allow us to conduct an effec-
tive description and smoothing.

RESULTS AND DISCUSSION
The presented algorithm is implemented in the 

shell “Maple V Power Edition”. The calculation re-
sults of non-stochastic and stochastic contribution to 
the empirical dependences of boiling temperatures of 
some aqueous-organic solvents are given in the table. 
Boundary deterministic harmonic M is calculated from 
the condition eM = 0 1. . Data in the table are arranged 
in order of decreasing of the number M and disper-
sion eM . The error of regression description for non-
additive amendment can be described by a root-mean-
square error, which can be defi ned as follow: 

 s =
-

-( )
=
Â1

1
2

1M M
T Ti

R
i
E

i

M

( )
D D  (11)

Fig. 1. The dependence of the modulus of the Fourier coef-
fi cients of the expansion (4) of non-additive amendment to 
boiling point isobar for the system “ethanol –water”  |bm | 

on the harmonic number m
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where DTi
R  and DTi

E  are regressive and experimental 
values of non-additive error respectively, ni  is the 
solvent concentration. 

Absolute and normalized to the maximum amend-
ments DTe   of root-mean-square errors of invari-
ant approximation (10) (σ and σn, respectively) are 
shown. The last column shows the normalized root-
mean-square error of approximation in case of con-
sideration of non-stochastic terms of the Fourier ex-
pansion (11). Of course, in the absence of the Fouri-
er expansion of the function of non-stochastic terms 
(M = 0) σf = σn.

CONCLUSION
According to the results of the calculations for 

most of the investigated water-organic solutions, the 
invariant approximation (11) completely describes 
the deterministic part of the empirical results. An ex-
ample of dependence dT nb ( ), which only contains 
a stochastic component, is shown in Figure 2. For 
some systems, the approximation (10) does not ful-
ly describe the empirical data and can be refi ned by 
taking into account the non-stochastic harmonics of 
function dTb , the value of which does not exceed two 
for all investigated solutions. Due to this fact, a very 

limited amount of empirical information allows us to 
construct an adequate description of the equilibrium 
binary systems. The accuracy of this description de-
pends only on random experimental errors. An ex-
ample of dependence dT nb ( ), which contains a non-
stochastic component, is shown in Figure 3. The con-
sideration of non-stochastic harmonics in the Fourier 
expansion of function dT nb ( ) allows us to reduce the 
relative error of the regression to values in 2–3 times, 
which does not exceed 2×10–2. Further reduction of 
this error can only be achieved by reducing stochas-
tic experimental errors.

In the presence of suffi cient empirical information, 
the description of homogeneous solutions, based on 
the direct Fourier expansion of the non-additive part 
of dependence T n( )  or on the preliminary allocation 
of the approximation (10), are both possible. The sec-
ond algorithm has demonstrated its effi ciency in the 
presence of a suffi cient amount of experimental data 
because it greatly reduces the amount of computation. 
It should be noted that the range of applicability of the 
proposed algorithm is much broader and includes the 
description of a wide class of physical and chemical 
properties of homogeneous systems in a state of ther-
modynamic equilibrium.

Table. Calculation results of non-stochastic and stochastic contributions to empirical dependences of boiling temperatures 
of aqueous-organic solutions. M is the number of non-stochastic harmonics of expansion function δT; εM is dispersion 
of χ parameter; σ and σn  are absolute and normalized to the maximum  amendments of three-parameter approximation 

respectively; σf is normalized root-mean-square error of approximation with M non-stochastic harmonics

Organic solvent M εM σ σn σf

Formic acid 2 0.089 0.133 0.0190 0.0094
Butanone 2 0.088 0.317 0.0138 0.0087
Isobutanol 2 0.063 1.103 0.0759 0.0231
1,4-Dioxane 1 0.082 0.739 0.0577 0.0211
Propionic acid 1 0.071 0.565 0.0195 0.0107
Allyl alcohol 1 0.065 0.254 0.0245 0.0057
Ethanol 0 0.097 0.064 0.0051 0.0051
1-Butanol 0 0.091 0.669 0.0424 0.0424
Furfurol 0 0.088 2.065 0.0423 0.0423
Methanol 0 0.083 0.031 0.0027 0.0027
Acetonitrile 0 0.077 0.038 0.0025 0.0025
Isopropanol 0 0.073 0.133 0.0087 0.0087
Cyclopentanol 0 0.071 0.621 0.0280 0.0280
Acetone 0 0.069 0.402 0.0170 0.0170
Butenone 0 0.067 0.330 0.0205 0.0205
Butyric acid 0 0.060 0.122 0.0035 0.0035
Ethylene glycol 0 0.057 0.087 0.0017 0.0017
1-Propаpanol 0 0.055 0.386 0.0340 0.0340
Acetic acid 0 0.053 0.031 0.0062 0.0062
Dimethylformamide 0 0.049 0.176 0.0120 0.0120
Ethyl acetate 0 0.031 0.397 0.0140 0.0140
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Аннотация. Построен алгоритм выделения  детерминированного вклада в  эмпирические 
зависимости физико-химических свойств бинарных водно-органических растворов от концен-
трации компонентов. Показано, что выделение неаддитивной части зависимости физико-хи-
мических характеристик от концентрации компонентов позволяет сформулировать алгоритм 
аналитического продолжения в формальную область отрицательных концентраций с непре-
рывными функциями, а также  первой и второй производными. Сформулированы количест-
венные критерии разделения стохастических  и динамических гармоник  в трехпараметричес-
кое регрессионное описание изобар температуры кипения бинарных растворов. Сформулиро-
ваны методы оптимизации алгоритма сглаживания эмпирических данных, уменьшающие 
объем необходимой информации. Построен базис регрессионного описания  зависимости 
температуры кипения бинарных водно-органических растворов от состава, позволяющий 
учесть основной вклад в детерминированную часть эмпирической информации.  Для ряда 
растворов рассчитан стохастический вклад в эмпирические  данные. Показано, что ошибка 
предложенной  регрессионной модели   не превышает 2 % и определяется только эксперимен-
тальными погрешностями. 

Ключевые слова: гомогенные смеси, вода, органические растворители, изобары, температу-
ра кипения, разложение Фурье.
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