УДК 539.27:546.41'185

ФАЗОВЫЙ СОСТАВ, СУБСТРУКТУРА И МОРФОЛОГИЯ КАЛЬЦИЙФОСФАТНЫХ ЦЕМЕНТОВ

© 2012 С. М. Баринов¹, Е. К. Белоногов³, В. М. Иевлев^{1,2}, В. С. Комлев¹, С. Б. Кущев³, Д. А. Синецкая², В. В. Смирнов¹, С. А. Солдатенко³

¹Институт металлургии и материаловедения им. А. А. Байкова РАН, Ленинский проспект 49, 119991 Москва, Россия ²Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия ³Воронежский государственный технический университет, Московский проспект 14, 394026 Воронеж, Россия

Поступила в редакцию 02.05.2012 г.

Аннотация. Методами рентгеновской дифрактометрии (РД), просвечивающей электронной микроскопии (ПЭМ) и растровой электронной микроскопии (РЭМ) исследованы фазовый состав, морфология и субструктура кальцийфосфатных цементов (КФЦ) на основе тетракальцийфосфата (ТеКФ) с добавками цитрата натрия. Установлено, что все КФЦ содержат две кристаллические фазы: гидроксиапатит (ГА), α -трикальцийфосфат (α -ТКФ) и аморфную фазу. При содержании цитрата натрия 4,5 и 6,2 мас. % кроме ГА и α-ТКФ образуется кристаллическая фаза брушит. При концентрации цитрата натрия 6,2 мас. % и более субструктура КФЦ представляла собой аморфную матрицу с пластинчатыми микрокристаллами и нанокристаллическими включениями. Для аморфной матрицы характерна высокая пористость с широким диапазоном распределения пор по размерам: от нанопор (5 нм) до мезопор (50 нм). Показано, что характер разрушения на монолитной матрице — хрупкий, на кристаллических включениях — хрупко-вязкий. В образцах КФЦ с увеличением добавки цитрата натрия последовательно увеличивается плотность микрокристаллических пластинчатых включений, что отражается на их прочности соответственно. При содержании цитрата натрия 4,5 и 6,2 мас. % среднее значение прочности КФЦ уменьшается, а при 11 мас. % — увеличивается по сравнению с КФЦ без добавки.

Ключевые слова: кальцийфосфатные цементы, фосфаты кальция, гидроксиапатит, трикальцийфосфат, аморфный фосфат кальция, композиционные материалы, просвечивающая электронная микроскопия, растровая электронная микроскопия, рентгеновская дифрактометрия, морфология поверхности, субструктура, пористость, фазовый состав.

введение

Кальцийфосфатные цементы (КФЦ) нашли широкое практическое применение в костной хирургии и предназначены для заполнения дефектов костных тканей [1]. Поэтому КФЦ должны обладать повышенной прочностью и трещиностойкостью; при этом цементная масса до схватывания должна обладать достаточной инжектируемостью, то есть не разделяться на твердую и жидкую фазу при выходе из шприца [2, 3]. Цементную массу получают при перемешивании порошков фосфатов кальция и относительно малого количества раствора. При этом происходит частичное растворение фосфатов кальция и образование наименее растворимого в данных условиях продукта, растущие частицы которого формируют микропористый композиционный монолит КФЦ, прочностные свойства которого взаимосвязаны с субструктурой и элементами субструктуры композита. Известно, что повышению механической прочности КФЦ способствует выделение частиц неравноосной морфологии (пластинчатых, игольчатых), обеспечивающих механическое зацепление [4, 5]. Одним из подходов улучшения как прочностных свойств КФЦ, так и повышения инжектируемости цементных масс является их модифицирование посредством введения в цементную жидкость различных добавок (молочная кислота, глицерин, хитозан, лимонная кислота или растворимые полимеры), что было показано в работах [3, 6].

Цель настоящей работы — исследовать влияние добавок различного количества цитрата натрия на

фазовый состав, субструктуру и морфологию кальцийфосфатных цементов на основе тетракальцийфосфата (ТеКФ). При выборе в качестве добавки трехнатриевой соли лимонной кислоты, исходили из следующих предпосылок: 1) соль не вызывает существенного снижения pH, в отличие от лимонной кислоты; 2) не должно происходить значительного повышения концентрации Ca²⁺ и PO₄³⁻ в жидкой фазе и 3) соль не должна существенно тормозить кинетику схватывания цемента.

МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы цементов получали при смешении в течение 40-50 с исходного порошка ТеКФ с цементной жидкостью (на основе водного раствора дигидрофосфата магния ($Mg(H_2PO_4)_2 \cdot 4H_2O$)) при соотношении 2:1 до получения вязкого раствора. Для решения поставленной задачи были подготовлены КФЦ с различным содержанием цитрата натрия в затворной жидкости: 4,5, 6,2 и 11 мас. %. Количество цитрата натрия было выбрано от 4,5 до 11 мас. %, т.к. это позволило повысить время схватывания от 6 до 10 минут. При меньшем количестве схватывание проходило за 2-3 минуты, что недостаточно для манипулирования с цементом в процессе хирургической операции. Полученный цементный раствор помещали в тефлоновую форму или в медицинский шприц диаметром 6 и 9 мм. После схватывания — через 6—10 минут, образцы вынимали из формы. Исследование на прочность и фазовый состав проводили по истечении 12 и более часов.

Исследования фазового состава и субструктуры КФЦ проводили методом рентгеновской дифрактометрии (ДРОН-4) и ПЭМ (ЭМВ-100БР). Морфологию поверхности исследовали методом РЭМ (JEOL JSM-6380). Идентификацию рентгеновских дифрактограмм и электронограмм проводили по банку JCPDS [7].

Для исследования субструктуры методом ПЭМ образцы готовили следующим образом. КФЦ в виде цилиндров измельчали до порошкообразного состояния. Полученный порошок диспергировали в дистиллированной воде на установке УЗДН-2Т с частотой 44 КГц в течение 20 секунд до образования суспензии. В качестве поддерживающих пленок использовали прозрачные для быстрых электронов углеродные пленки (толщиной до 20 нм). Углеродные пленки препарировали на предметную сетку. Высушенную пленку-подложку погружали в суспензию на 1—2 секунды, а затем извлекали и просушивали на воздухе. Для получения высококачественного изображения морфологии поверхности излома диэлектрических материалов при исследовании методом РЭМ, на их поверхность методом катодного распыления наносили пленку Au (толщина 10—20 нм), которая, с одной стороны, обеспечивает стекание наводимого электростатического заряда, с другой — высокий коэффициент вторичной эмиссии, что существенно повышает яркость и контраст РЭМ-изображения.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

ФАЗОВЫЙ СОСТАВ

На рис. 1 приведены рентгеновские дифрактограммы, характеризующие фазовый состав образцов КФЦ без и с добавками различного количества цитрата натрия.

Результаты анализа дифрактограмм приведены в таблице 1, из которой следует, что образец без добавки цитрата натрия содержит две кристаллические фазы: ГА с гексагональной решеткой (*a* = 0,9432 нм и *c* = 0,6881нм [7]) и α-ТКФ с моноклинной решеткой (*a* = 1,2887 нм, *b* = 2,728 нм и c = 1,5219 нм; $\beta = 126,2^{\circ}$ [7]) (рис. 1 a). Малоугловое диффузное рассеяние, а также рассеяние в диапазоне углов $2\theta = 32-40^\circ$, свидетельствует о том, что в КФЦ наряду с кристаллическими фазами содержится аморфная фаза (АФ). Добавка цитрата натрия в количестве 4,5 и 6,2 мас. % приводит к изменению фазового состава образцов: наряду с кристаллическими фазами ГА, α-ТКФ и аморфной фазой образуется кристаллическая фаза брушита с моноклинной решеткой (*a* = 0,5812 нм, *b* = 1,518 нм и *c* = 0,6239 нм; *β* = 116,46° [7]) В образцах с добавкой цитрата натрия в количестве 11 мас. % кристаллической фазы брушита не обнаружено.

Таким образом, методом рентгеновской дифрактометрии установлено, что все образцы КФЦ являются композитными материалами, состоящими из аморфной и кристаллических фаз. Тот факт, что в составе всех образцов присутствует α-ТКФ свидетельствует о незаконченности реакции гидролиза при связывании цементной массы [1].

МЕТОД ПЭМ

На рис. 2 представлены характерные ПЭМизображения и фрагменты ДБЭ (микроэлектронограммы) дисперсных фракций цементной массы на основе фосфатов кальция, полученных в результате диспергирования КФЦ. Анализ электронограмм от выделенного участка, а также темнопольный анализ дисперсных фрагментов цементной массы выявляет аморфно-нанокристаллическую структуру (рис. 2) для всех исследованных образцов. Все отражения на картинах дифракции соответствуют наиболее интенсивным отражениям, отвечающими решеткам ГА и ТКФ. Структурное подобие ГА и ТКФ, недостаточное число отражений и погрешность картин микродифракции не позволяют однозначно идентифицировать и разделить эти фазы.

Аморфная фаза характеризуется высокой пористостью (рис. 2 з). Размеры пор составляют от 5 до 40 нм. В объеме АФ содержатся пластинчатые кристаллиты (рис. 2 *a*, ∂), в КФЦ с добавкой цитрата натрия 6,2 и 11 мас. % содержатся нанокристаллические включения (рис. 2 \mathcal{M}).

Общая субструктурная и морфологическая характеристика КФЦ дана в таблице 1.

Контраст некогерентного рассеяния, наблюдаемый вокруг кристаллитов, возникает от рассеяния электронов на аморфной оболочке.

МОРФОЛОГИЯ ПОВЕРХНОСТИ ИЗЛОМА

На рис. 3 представлены РЭМ изображения, характеризующие морфологию поверхности скола

Рис. 1. Рентгеновские дифрактограммы образцов КФЦ без добавки (*a*) и с добавкой цитрата натрия в количестве 4,5 (*б*) и 11,0 масс. % (*в*)

КФЦ без добавки и с добавкой цитрата натрия различной концентрации. Для поверхности излома образца без добавки (рис. 3 *a*) с одной стороны характерна макро- и мезопористость субструктуры цементной массы с размерами пор от 10 до 200 мкм, с другой — микропористая субструктура и развитый рельеф поверхности излома (рис. 3 б, е). Наблюдаемая морфология излома обусловлена высокодисперсными частицами со слабо выраженным пластинчатым габитусом. Наряду с макро- и мезопорами на поверхности присутствуют макротрещины, образующиеся, по-видимому, вследствие

Рис. 2. Светлопольные (*a*, *d*, *s*) и темнопольные (*в*, *ж*) изображения и микроэлектронограммы (*б*, *e*) образцов КФЦ без добавки (*a*, *б*, *в*) и с добавкой цитрата натрия 11мас. % (*d*, *e*, *ж*, *s*)

ruotinga it coviab il e joerp jili prible napanterpbi copasigob iti i	Таблица 1.	Состав и	субструктурные	параметры	образцов	КФЦ
---	------------	----------	----------------	-----------	----------	-----

Концетрация цитрата натрия, мас. %	Конечный фазовый состав КФЦ	Размер частиц препарированного порошка КФЦ	Размер кристалли- тов	Размер пор
	$\Gamma A + \alpha$ -TK $\Phi + A\Phi$	0,1—5мкм	0,05—5мкм	20—30нм
4,5	$\Gamma A + брушит + \alpha$ -ТК $\Phi + A\Phi$	0,1—5мкм	3 мкм	15—40нм
6,2	ΓA + брушит + α -ТК Φ + $A\Phi$	0,02—4мкм	15—20 нм 2—4 мкм	15—20нм
11	$\Gamma A + \alpha$ -TK $\Phi + A\Phi$	0,05—5мкм	10—15 нм, 5 мкм	15нм

ФАЗОВЫЙ СОСТАВ, СУБСТРУКТУРА И МОРФОЛОГИЯ КАЛЬЦИЙФОСФАТНЫХ ЦЕМЕНТОВ

Рис. 3. РЭМ-изображения поверхности излома КФЦ без добавки цитрата натрия (*a*, *б*, *в*), с добавкой 4,5 мас. % (*г*, *d*, *e*), 6,2 мас. % (*ж*, *з*, *u*) и 11 мас. % (*к*, *л*, *м*) при различных увеличениях

усадки затвердевшей цементной массы при высыхании. Излом имеет характерные признаки хрупкого разрушения, но вместе с тем есть участки вязкого разрушения, где отдельные элементы морфологии (ямки микропластической деформации, квазифасетки) свидетельствуют о микропластической деформации. Наиболее характерные элементы рельефа вязкого излома — гребнистые квазифасетки, расположенные произвольным образом в виде единичных образований или групп. Следовательно, хрупко-вязкое разрушение претерпевают наиболее дисперсные элементы структуры, а массивный материал разрушается хрупко.

Добавка цитрата натрия в количестве 4,5 мас. % приводит к изменению морфологии поверхности скола. В сравнении с предыдущим образцом отмечается более низкая микропористость и значительно меньше признаков вязкого разрушения (рис. 3 ∂ , e). Кроме того, на поверхности разрушения КФЦ кроме макротрещин (рис. 3 e) присутствует микротрещины (рис. 3 ∂).

Увеличение концентрации цитрата натрия до 6,2 мас. % (рис. 3 \mathcal{K} , *s*, *u*) приводит к более развитому рельефу поверхности излома (рис. 3 \mathcal{K} , *s*) с хорошо выраженной слоистой морфологией поверхности и наибольшему из всех образцов размеру пластинчатых кристаллических включений, формирующих слоистую структуру цемента (рис. 3 *u*). Наибольшая компактность цемента достигается при концентрации цитрата натрия 11 мас. % (рис. 3 κ , *л*, *м*), в котором матрица содержит включения сферической и пластинчатой формы. Для данных образцов на поверхности скола отсутствуют макро- и микротрещины, что свидетельствует о значительно меньшей усадке данных КФЦ при их затвердевании.

В табл. 2 сведены морфологические характеристики образцов по данным РЭМ.

Таким образом, морфологические признаки указывают на то, что цементы характеризуются высокой дисперсностью структуры и высокой долей аморфной фазы, о чем свидетельствует отсутствие на поверхности изломов четкой кристаллографической огранки. Характер разрушения на монолитной матрице — хрупкий, на кристаллических включениях — хрупко-вязкий. Относительно невысокая прочность КФЦ, по-видимому, обусловлена системой усадочных микротрещин и низкой плотностью пластинчатых кристаллических включений, присутствие которых в необходимом количестве, как правило, улучшает прочность КФЦ [5]. В образцах КФЦ увеличение добавки цитрата натрия приводит к росту плотности микрокристаллических пластинчатых включений и соответственно прочности.

выводы

Установлено, что все КФЦ содержат две основные кристаллические фазы (ГА, α-ТКФ) и аморфную фазу. При содержании добавки цитрата натрия 4,5 и 6,2 мас. % кроме ГА и α-ТКФ образуется кристаллическая фаза брушит.

Установлено, что при концентрации цитрата натрия 6,2 и 11мас. % субструктура КФЦ представляла собой аморфную матрицу с пластинчатыми микрокристаллами и нанокристаллическими включениями. Для аморфной матрицы характерна высокая пористость с широким диапазоном распределения пор по размерам: от нанопор (5 нм) до мезопор (50 нм).

Характер разрушения на монолитной матрице — хрупкий, на кристаллических включениях —

Состояние поверхности излома	Форма и размеры пор	Пори- стость, %	Степень плотно- сти кристаллов и размеры	Габитус	Прочн., МПа
Пористый рельеф; система макротрещин	Сферические макро и микропоры, 2—200 мкм	30	Низкая, 1—10 мкм	Пластинча- тый	45—90
Гладкая; система макро- и микротрещин	Микропоры, 0,2—30 нм	5	Низкая, 1—10 мкм	Пластинча- тый	30—68
Развитый рельеф	Макро и микропоры, 2—100 мкм	5	Средняя, 3—10 мкм	Пластинча- тый	40—80
Гладкая; система пор	Сферические макро и микропоры, 0,2—200 мкм	15	Низкая, 1—5 мкм	Пластинча- тый	50—100

Таблица 2. Морфологические характеристики образцов цементов и их прочность.

ФАЗОВЫЙ СОСТАВ, СУБСТРУКТУРА И МОРФОЛОГИЯ КАЛЬЦИЙФОСФАТНЫХ ЦЕМЕНТОВ

хрупко-вязкий. В образцах КФЦ с увеличением добавки цитрата натрия последовательно увеличивается плотность микрокристаллических пластинчатых включений, что отражается на их прочности соответственно. При содержании добавки цитрата натрия 4,5 и 6,2 мас. % прочность КФЦ уменьшается по сравнению с КФЦ без добавки, а при 11 мас. % — увеличивается.

Работа выполнена в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007—2013 годы» ГК №16.512.12.2011

Баринов Сергей Миронович — д.т.н., профессор, член-корреспондент РАН, зам. директора по научной работе ИМЕТ РАН; тел.: (499) 1352060, e-mail: imet@ ultra.imet.ac.ru

Белоногов Евгений Константинович — к.ф.-мат.н., доцент, профессор Воронежского государственного технического университета; тел.: (473) 2467633, e-mail: belonogov@phis.vorstu.ru

Иевлев Валентин Михайлович — д.ф.-мат. н., профессор, академик РАН, заведующий кафедрой материаловедения и индустрии наносистем Воронежского государственного университета; тел.: (473) 2208735, еmail: rnileme@mail.ru

Комлев Владимир Сергеевич — д.т.н., ведущий научный сотрудник ИМЕТ РАН; тел.: (495) 4379740, e-mail: imet@ultra.imet.ac.ru

Кущев Сергей Борисович — д.ф.-мат. н., профессор, Воронежский государственный технический университет; тел.: (473) 2467633, e-mail: kushev_sb@mail.ru

Синецкая Дарья Алексеевна — студентка Воронежского государственного университета; тел.: (473) 2467633, e-mail: heldis_autumn@mail.ru

Смирнов Валерий Вячеславович — к.т.н., ведущий научный сотрудник ИМЕТ РАН; тел.: (495) 4379740, е-mail: imet@ultra.imet.ac.ru

Солдатенко Сергей Анатольевич — к.ф.-мат.н., с.н.с. научно-исследовательской лаборатории электронной микроскопии и электронографии кафедры физики твердого тела, Воронежский государственный технический университет; тел.: (473) 2467633, e-mail: kushev_ sb@mail.ru

СПИСОК ЛИТЕРАТУРЫ

1. Вересов А. Г., Путляев В. И., Третьяков Ю. Д. // Рос. Хим. Ж. 2004. Т.XLVIII. № 4. С. 52—64.

2. Баринов С. М., Комлев В. С. Биокерамика на основе фосфатов кальция. М.: Наука, 2005. 204 с.

3. *Gbureck U., Barralet J. E., Spatz K., et al.* // Biomaterials. 2004. V. 25. P. 2187—2195.

4. *Liu Ch., Shen W., Gu Y., et al.* // J. Biomed. Mater. Res. 1997. V. 35. P. 75—80.

5. *Kenny S. M., Burggy M.* // J. Mater. Sci. Mater. Med. 2003. V. 14. P. 923–938.

6. *Leroux L., Hatim Z., Freche M., et al.* // Bone. 1999. V. 25. № 2. P. 31—34.

7. Powder Diffraction File. Alphabetical Index Inorganic Compounds. Pensilvania: ICPDS, 1997.

Barinov Sergey M. — grand PhD (Eng.), professor, Corresponding Member, RAS, A.A. Baikov Institute of Metallurgy and Materials Science, RAS; tel.: (499) 1352060, e-mail: imet@ultra.imet.ac.ru.

Belonogov Evgeniy K. — PhD (Phys.-Math.), professor of chair of the General Physics of Radio-electronic Profile, Voronezh State Technical University; tel.: (473) 2467633, e-mail: belonogov@phis.vorstu.ru

Ievlev Valentin M. — grand PhD (Phys.-Math.), Academician, RAS, professor, head of chair of Materials Science and Industry of Nanosystems, Voronezh State University; tel.: (473) 2208735, e-mail: rnileme@mail.ru.

Komlev Vladimir S. — grand PhD (Eng.), leading scientific employee, Institute of Metallurgy and Materials Science, RAS; tel.: (495) 4379740, e-mail: imet@ultra.imet. ac.ru

Kushev Sergey B. — grand PhD (Phys.-Math.), professor, Voronezh State Technical University; tel.: (473) 2467633, e-mail: kushev_sb@mail.ru

Sinetskaya Darya A. — student of chemical department of the Voronezh State University; tel.: (473) 2467633, email: heldis autumn@mail.ru

Smirnov Valeriy V. — PhD (Eng.), leading scientific employee, A.A. Baikov Institute of Metallurgy and Materials Science, RAS

Soldatenko Sergey A. — PhD (Phys.-Math.), senior scientific employee, Voronezh State Technical University; tel.: (473) 2467633, e-mail: kushev sb@mail.ru