УДК 620.193

ВЛИЯНИЕ КАТОДНОЙ И АНОДНОЙ ПОЛЯРИЗАЦИИ НА ДИФФУЗИЮ ВОДОРОДА ЧЕРЕЗ СТАЛЬНУЮ МЕМБРАНУ ИЗ ЭТИЛЕНГЛИКОЛЕВЫХ РАСТВОРОВ НСІ, СОДЕРЖАЩИХ ПИРИДИН

© 2012 И.В. Зарапина

Тамбовский государственный технический университет, ул. Советская 106, 392000 Тамбов, Россия Поступила в редакцию: 29.04.2011 г.

Аннотация. Исследовано влияние катодной и анодной поляризации входной стороны стальной мембраны и концентрации HC1 (0,01—0,99 моль/л) на диффузию водорода через стальную мембрану CT3 в солянокислых этиленгликолевых растворах, содержащих пиридин, в присутствии 0,1 и 10 масс. % воды, с постоянной ионной силой, равной 1. Результаты интерпретированы с учетом степени заполнения поверхности двумя формами адсорбированного водорода: надповерхностной H[°]_{алс} и подповерхностной H[°]_{алс}.

Ключевые слова: сталь, мембрана, этиленгликоль, вода, ионы водорода, пиридин, диффузия, катодная и анодная поляризация.

введение

Значительный вклад в понимание закономерностей процесса наводороживания вносит изучение влияния катодной и анодной поляризации рабочей стороны мембраны на скорость твердофазной диффузии водорода через нее.

Согласно ряду исследований [1, 2], в кислых водных растворах скорость диффузии водорода $i_{\rm H}$ (наводороживание) через стальную мембрану пропорциональна плотности катодного тока на ее поляризационной стороне i_K . Одновременно поток диффузии $i_{\rm H}$, при прочих равных условиях, должен зависеть от степени заполнения поверхности атомарным водородом $\theta_{\rm H}$ [3, 4], вернее доли ее активных центров, занятых $H_{\rm agc}$. Величина $\theta_{\rm H}$, в свою очередь, определяется природой лимитирующей стадии реакции выделения водорода (PBB) [5, 6]. PBB сводится к следующему [7—9]:

— первая стадия — разряд доноров протонов

$$H_{solv}^{+} + e \xrightarrow{\iota_l} H_{a,c}^{+} + solvent$$
 (реакция Фольмера), (1)

где solvent характеризует молекулу растворителя. Ее итогом является посадка ад-атомов водорода на поверхность металла, выступающего в роли твердого, либо жидкого электрода;

— вслед за реакцией (1) наблюдается удаление адсорбированного атомарного водорода. Для этого

существует несколько маршрутов [7—10]. В том числе:

$$\begin{array}{l} H_{aac} + H_{solv}^{+} + e \xrightarrow{l_{2}} H_{2} + \text{solvent} \\ \text{(реакция Гейровского),} \end{array}$$
(2)

 $H_{ac} + H \xrightarrow{i_3} H_2$ (реакция Тафеля). (3)

С переходом H_2 по (3) в газовую фазу сток H_{aac} протекает параллельно по реакциям, соответствующим уравнениям (4) и (5)

$$H_{adc} \xrightarrow{i_4} H^s_{adc},$$
 (4)

$$\mathrm{H}^{s}_{\mathrm{anc}} \xrightarrow{i_{5}} \mathrm{H}^{v}_{\mathrm{anc}}.$$
 (5)

Верхние индексы в (4) и (5) характеризуют соответственно атомы водорода (S), проникшие под первый подповерхностный слой металла и удаляющиеся в его объем (V) (твердофазная диффузия). Если природа металлической фазы постоянна, то изменение потока твердофазной диффузии определяется соотношением скоростей стадий (1) — (5).

Формально стадии (2) — (4) обусловливают сток Н_{алс}, и любая из них может явиться завершающей в РВВ (если, конечно, каждую из указанных, в свою очередь, не рассматривать как стадийный процесс) [11, 12].

Примем $i_4 = i_5 = i_H$. В этом случае возможны следующие варианты:

1. Лимитирует стадия (1). Этот случай интерпретируется как замедленный разряд.

2. Если замедлены реакции (2) или (3), то случай (1), (2) характеризует механизм Фольмера — Гейровского, (1), (3) — Фольмера — Тафеля. При этом наводороживание металлической фазы практически отсутствует, а H_{aac} полностью переходит в газовую фазу в виде H_2 . В обратном варианте $(i_H \rightarrow i_K)$ — весь водород стремится в твердую фазу. В последнем случае РВВ формально осуществляется по маршруту (1), (4), вклад же стадии (2) или (3) в сток H_{aac} приближается к нулю. Представим $i_H/i_K = \rho$, где ρ представляет собой долю H_{aac} , удаляемого с поверхности за счет объемной твердофазной диффузии. Величина ρ может принимать значения:

1. $\rho = 0$ (наводороживание металлической фазы отсутствует).

2. $\rho = 1$ (исключено образование H₂ по стадиям (2) или (3)).

3. 0 < ρ < 1 (промежуточный, наиболее часто реализуемый случай).

Тем не менее, при определенных условиях скорость із может определяться и поверхностной диффузией Н_{алс}, что наблюдалось, в частности, в работах [13, 14]. Тогда величина і_н не является функцией коэффициента диффузии водорода через металл и кинетики посадки Нале. Подобная картина характерна для диффузии водорода в условиях катодной поляризации рабочей стороны стальной мембраны из условно безводных (0,1 масс. % Н₂О) этиленгликолевых растворов HCl с постоянной ионной силой, не содержащих стимуляторов наводороживания [15]. В данных фоновых растворах отсутствует корреляция между функциями $i_{\rm K} = f(E_{\rm K})$ и $i_{\rm H} = f(E_{\rm K})$ при сдвиге потенциала в катодную область E_K. Если величина i_K с изменением потенциала Е_к систематически возрастает, либо достигает предельного значения и далее остается постоянной, то функция $i_{\rm H} = f(E_{\rm K})$ проходит через максимум. Качественно подобные результаты наблюдаются и в присутствии соединений As (V) [16] и тиомочевины (NH₂)₂CS [17].

Процесс наводороживания может протекать со значительной скоростью и в условиях анодного растворения железа и его сплавов при потенциалах выше равновесного водородного в данной среде [18, 19], причем функция $i_{\rm H} = f(E_{\rm A})$ проходит через максимум, который смещается в область больших анодных поляризаций. Этот эффект получил название «анодного водорода». Причинами его появления могут быть:

— выход в объем раствора низковалентных частиц, обуславливающих химическое разложение

воды и появление Н_{адс};

— химическое восстановление ионов H_3O^+ в приэлектродном пространстве ионами металла промежуточной валентности;

 наличие монослоя адсорбированных атомов водорода (эффект «недонапряжения»);

 подкисление приэлектродного слоя раствора в результате образования гидроксильных комплексов железа.

В этиленгликолевых растворах с $C_{\text{H}_{\text{solv}}^+} \leq 0,1 \text{ M}$ анодная ионизация железа протекает по схеме [20]:

$$Fe + ROH \rightleftharpoons Fe(RO)_{anc} + H^+_{solv} + e$$
 (6)

где ROH — молекула C₂H₄(OH)₂. Далее следуют реакции

$$\operatorname{Fe}(\operatorname{RO})_{\operatorname{adc}} + \operatorname{Cl}^{-} \rightleftharpoons \operatorname{Fe}(\operatorname{ROCl}^{-})_{\operatorname{adc}}$$
(7)

$$\operatorname{Fe}(\operatorname{ROCl}^{-})_{\operatorname{adc}} \to \operatorname{Fe}^{2^{+}} + \operatorname{RO}^{-} + \operatorname{Cl}^{-} + e.$$
(8)

Рост $C_{\mathrm{H}_{\mathrm{solv}}^+}$ в сильнокислых средах за счет анодной ионизации незначителен по сравнению с ее исходной величиной. При $C_{\mathrm{H}_{\mathrm{solv}}^+} > 0,1$ М практически нацело заменяется на:

$$\operatorname{Fe}(\operatorname{ROCl}^{-})_{\operatorname{agc}} + \operatorname{H}^{+}_{\operatorname{solv}} \to \operatorname{Fe}^{2^{+}} + \operatorname{ROH} + \operatorname{Cl}^{-} + e.$$
(9)

Следовательно, увеличение концентрации H_{solv}^+ отсутствует, так как в стационарных условиях скорости их накопления и расхода одинаковы. Таким образом, авторы отмечают, что только посредством кинетических особенностей восстановления H_{solv}^+ нельзя объяснить наблюдаемые изменения $i_{\rm H}$.

При анодной поляризации в условно безводных этиленгликолевых растворах HCl и отсутствии стимуляторов наводороживания наблюдается максимум функции $i_{\rm H}=f(E_{\rm A})$ [19]. В присутствии соединений As (V) [16] этот экстремум часто достичь не удается, и связь $i_{\rm H}$ с $E_{\rm A}$ отсутствует. Зависимость потока диффузии водорода через мембрану от величины анодной поляризации в водно-этиленгликолевых растворах HCl в присутствии тиомочевины [17] также проходит через максимум.

Кроме этого, значительный интерес представляет выяснение наличия и характера связи твердофазной диффузии водорода с величиной катодного и анодного сдвига потенциала металла от потенциала коррозии при переходе от лимитирующей стадии разряда к замедленной рекомбинации. Ранее [21, 22] установлено, что в условно безводных этиленгликолевых растворах в отсутствии и при наличии пиридина РВВ протекает в условиях замедленного разряда ионов $C_2H_4(OH)_2H^+$ (табл. 1). При последующем стократном росте $C_{воды}$ в смешанном растворителе кинетические параметры во всех случаях соответствуют требованиям протека-

$C_{\rm H_{2}O}^{\rm \tiny MCX}$, macc. %	<i>С</i> _{пиридина} , мМ	$-\frac{dE}{d\lg i_{K}},\mathbf{B}$	$\frac{dE}{d \lg C_{\mathrm{H}^+}}, \mathbf{B}$	$\left(\frac{d \lg i_{\mathrm{K}}}{d \lg \mathrm{C}_{\mathrm{H}^{+}}}\right)_{E,C_{i}}$	$\frac{d\eta_{\rm H}}{d\lg i_{\rm K}}, \mathbf{B}$	$-\frac{d\eta_{\rm H}}{d\lg C_{\rm H^+}}, {\rm B}$	$\left(\frac{d \lg i_{\mathrm{K}}}{d \lg C_{\mathrm{H}^+}}\right)_{\eta,c_i}$
0,1	0	0,110	0,085	0,85	0,110	0,055	0,50
	1	0,110	0,095	0,90	0,110	0,060	0,60
10	0	0,070	0,045	0,70	0,070	0,025	0,20
	1	0,065	0,040	0,60	0,065	0,000	0,00

Таблица 1. Кинетические параметры РВВ на железе в растворах системы $C_2H_4(OH)_2 - H_2O - HC1 - C_5H_5N$ с составом электролита *x* M HC1 + (1 - *x*) M LiC1 (водородная атмосфера, комнатная температура)

ния PBB с лимитирующей стадией рекомбинации. При этом наблюдается полная объемная пересольватация протона ($C_2H_4(OH)_2H^+ \rightarrow H_3O^+$).

Целью настоящей работы является получение результатов, определяющих насколько общий характер имеют наблюдаемые зависимости $i_{\rm K}=f(E_{\rm K}), i_{\rm H}=f(E_{\rm K}), \rho=f(E_{\rm K}), i_{\rm H}=f(E_{\rm A})$. Исследования проведены в этиленгликолевых растворах HCl в присутствии пиридина, который, согласно нашим данным, практически полностью протонируется по реакции:

$$C_5H_5N + H^+ \rightarrow C_5H_5NH^+$$
(10)

с образованием ионов пиридиния.

МЕТОДИКА ЭКСПЕРИМЕНТА

Рабочие растворы состава x M HC1 + (1 - x) MLiC1 получали насыщением смешанного растворителя сухим хлористым водородом с последующей оценкой $C_{\text{H}_{solv}}$ титрованием щелочью (индикатор — фенолфталеин) и введением заданного количества сухого хлористого лития (осушка при 100—105°C) до постоянства ионной силы, равной 1. Использован C₂H₄(OH)₂ квалификации «ч.д.а.», $C_{\text{H}_2\text{O}}$ до 0,1 (исходная концентрация, масс. %, хроматографическая оценка) и 10 масс. %. Вода бидистиллят. Концентрация ионов водорода лежит в интервале C_{H^+} 0,01—0,99 моль/л. В фоновые растворы вводили C₅H₅N квалификации «х.ч.» в концентрации 1 мМ.

Поляризационные измерения проведены посредством потенциостата П5827М с использованием водного хлоридсеребряного (потенциал пересчитаны по н.в.ш.) электрода сравнения.

Диффузию водорода через стальную (Ст3) вертикальную мембрану площадью 3,63 см² и толщиной 300 мкм изучали по методике [23] в двухкамерной ячейке типа ячейки Деванатхана, выполненной из стекла «Пирекс». Схема ее приведена в [24].

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Твердофазная диффузия водорода в условиях катодной поляризации входной стороны мембраны. На зависимости, характеризующей скорость РВВ на входной стороне мембраны в условно безводных этиленгликолевых средах с 0,01 моль/л H_{solv}^+ в присутствии 1мМ $C_5H_5NH^+$ (рис. 1а), можно выделить два участка (кривая 1) — AB, на котором величина $dlgi_K/dE_K = const и весьма$ существенна по абсолютному значению, и ВС, представляющий область предельного катодного тока. На нем $dlgi_K/dE_K$ равна нулю (рис. 1 *а*, кривая 1). Зависимость $i_{\rm H}$ от $E_{\rm K}$ также характеризуется наличием двух участков (рис. 1 *a*, кривая 2) — DE, соответствующий интервалу АВ, и ЕГ → ВС. Восходящий участок функции $\rho = f(E_{\rm K})$ совпадает с AB и DE (рис. 1 *а*, кривая 3). Далее следует достаточно короткий нисходящий участок. В интервале $-0,40 \le E_{\rm K} \le -0,48$ В $\rho \ne f(E_{\rm K})$, но эта область не совпадает с участками ВС и ЕF.

Увеличение концентрации ионов водорода до 0,99 М не меняет качественный характер зависимости $i_{\rm K}$ с ростом $E_{\rm K}$ (рис. 1 δ , кривая 1). Вид функции $i_{\rm H} = f(E_{\rm K})$ в этом случае несколько отличается от предыдущего (рис. 1 a, кривая 2). Теперь кривая 2 имеет плавно возрастающий ход, и выделить на ней какие-либо участки достаточно сложно. Величина ρ (рис. 1 δ , кривая 3), проходя через максимум, плавно снижается и далее (с $E_{\rm K} = -0,25$ В) остается неизменной.

Важно было выяснить, влияет ли природа растворителя, а также кислотность раствора на зависимость величины ρ от катодного сдвига потенциала входной стороны мембраны. В условно безводных этиленгликолевых солянокислых средах с постоянной ионной силой, равной 1 и $C_{\text{воды,нсх}}=0,1$ масс. %, величина ρ снижается с ростом катодной поляризации в широкой области потен-

Рис. 1. Влияние катодной поляризации на скорость РВВ на входной стороне мембраны (1), поток диффузии через нее водорода (2) и величину ρ (3) в условно безводных этиленгликолевых растворах с составом электролита: *а* 0,01 M HCl + 0,99 M LiCl; δ 0,99 M HCl + 0,01 M LiCl, содержащих 1 мМ C₅H₅N. Атмосфера — воздух, комнатная температура

циалов (рис. 1). Однако ход кривых в координатах ρ , $E_{\rm K}$ зависит от $C_{\rm H^+}$. При 0,99 моль/л HCl (рис. 2, кривая 1) ρ слабо уменьшается с ростом катодной поляризации. Величина ρ возрастает со снижением $C_{\rm H^+}$, приближаясь к 1 при $C_{\rm HC1}$ 0,01 моль/л ($E_{\rm K}$ =const), проходя через максимум (рис. 2, кривая 2). При высоких катодных потенциалах на кривой 2 появляется широкая область, в которой отсутствует или очень слаба зависимость ρ от $E_{\rm K}$.

Ранее [14] подобный вид функции $\rho = f(E_{\rm K})$ наблюдался в хлоридных этиленгликолевых растворах, не содержащих C₅H₅N, или других стимуляторов наводороживания. При малой C_{H⁺} функция в координатах ρ , $E_{\rm K}$ проходит через максимум. Также ρ имеет тенденцию к возрастанию с падением кислотности. Таким образом, наличие стимуляторов наводороживания не является един-

Рис. 2. Связь величины ρ с потенциалом входной стороны стальной (Ст3) мембраны в условиях ее катодной поляризации и концентрацией HC1 в условно безводных этиленгликолевых растворах, содержащих 1 мМ С₅H₅N. С_{HC1}, моль/л: 1 — 0,99; 2 — 0,01. Атмосфера — воздух, комнатная температура

ственным фактором появления максимума в координатах ρ , $E_{\rm K}$.

При увеличении концентрации воды в смешанном растворителе до 10 мас. % воды, в 0,01 М растворе HC1, содержащем 1 мМ С₅H₅N, на кривой, характеризующей зависимость $i_{\rm K}$ от $E_{\rm K}$, можно выделить три участка (рис. 3 *a*, кривая 1) — АВ с небольшой величиной $dlgi_{\rm K}/dE_{\rm K}$; BC, где $d \lg i_{\rm K}/dE_{\rm K} =$ const и резко возрастает по абсолютному значению по сравнению с АВ, и CD, представляющий область предельного катодного тока, где величина $dlgi_K/dE_K$ равна нулю. На зависимости $i_{\rm H} = f(E_{\rm K})$ по-прежнему явно выражены два участка (рис. 3 *а*, кривая 2). В области ЕF величина *i*_н систематически возрастает с увеличением катодной поляризации, а начиная с -0,40 В переходит в отрезок FI, где поток диффузии водорода остается практически неизменной.

Функция $\rho = f(E_{\rm K})$ имеет максимум ($E_{\rm K} = -0.34$), после достижения которого кривая 3 рис. За быстро снижается до $E_{\rm K} = -0.40$ В и при $-0.40 \le E_{\rm K} \le -0.54$ В величина ρ остается неизменной.

С увеличением концентрации HC1 до 0,99 М зависимость $i_{\rm K}$ и $i_{\rm H}$ от $E_{\rm K}$ (рис. 3 δ , кривые 1 и 2, соответственно) плавно возрастают, не достигая постоянного значения в исследуемой области $\Delta E_{\rm K}$. Функция $\rho = f(E_{\rm K})$ не имеет максимума (рис. 3 δ , кривая 3), а представляет собой протяженную систематически нисходящую зависимость.

Связь ρ с концентрацией ионов водорода при сдвиге потенциала в катодную область качественно остается прежней (рис. 4).

Ранее [14], при интерпретации результатов, характеризующих зависимость $i_{\rm H}$, $i_{\rm K}$ и ρ от $E_{\rm K}$, отмечалось, что наличие предельного катодного тока

Рис. 3. Влияние катодной поляризации на скорость РВВ на входной стороне мембраны (1), поток диффузии водорода через нее (2) и величину ρ (3) из этиленгликолевых растворов с содержанием 10 мас. % H₂O (исходная концентрация) в смешанном растворителе системы C₂H₄(OH)₂ — H₂O с составом электролита: *a* 0,01 M HCl + 0,99 M LiCl; δ 0,99 M HCl + 0,01 M LiCl, содержащих 1 мM C₅H₅N. Атмосфера — воздух, комнатная температура

(кривые 1, рис. 1, 3) может быть обусловлено следующим:

— замедленной доставкой Н⁺_{solv} к поверхности электрода из объема раствора;

— замедленным массопереносом в процессе латеральной диффузии, что особенно вероятно, учитывая, что коэффициент подобного двумерного процесса более чем на порядок меньше его трехмерного аналога [15];

 наличием кинетических токов, обусловленных наличием лимитирующей предшествующей химической стадии.

При влиянии первого фактора должна наблюдаться зависимость $i_{\rm K}$ от гидродинамических условий в приэлектродном слое, которая, по экспери-

Рис. 4. Связь величины ρ с потенциалом входной стороны стальной (Ст3) мембраны в условиях ее катодной поляризации и концентрацией HC1 в этиленгликолевых растворах (С_{воды, исх} — 10 мас. %), содержащих 1 мМ C₅H₅N. С_{HC1}, моль/л: *1* — 0,99; *2* — 0,01. Атмосфера — воздух, комнатная температура

ментальным данным, полученным в растворах без добавки, не имеет места [14]. Для разряда H_{solv}^+ , согласно [25], третий фактор вообще не наблюдается. При контроле процесса латеральной диффузией связь $i_{\rm K}$ с частотой вращения дискового электрода должна отсутствовать.

Несомненно, $i_{\rm H}$ зависит от степени заполнения поверхности стали ($\theta_{\rm H}$), вернее доли ее активных центров, занятых ${\rm H}_{\rm agc.}$. Отметим, что наличие двух форм адсорбированного водорода — надповерхностного (raised) и подповерхностного (subsurface), обозначаемых соответственно через H^r и H^s, показано и в [26, 27]. Обе они, прочно связанная с металлом H^r и существенно менее прочно — H^s, находятся в равновесии:

$$H_{anc}^{r} \leftrightarrow H_{anc}^{s}$$
, (11)

Их двумерные концентрации — соответственно $\theta_{\rm H}^r$ и $\theta_{\rm H}^s$.

Энергия H_{aac}^r заметно ниже таковой основного состояния и характеризуется минимумом при равновесном расстоянии атома от поверхности металла порядка 0,1 нм (от внешней границы двойного электрического слоя). Природа связи формы H_{aac}^r с металлом аналогична обычной ковалентной в теории молекулярных орбиталей. Следовательно, H_{aac}^r располагается над атомом металла и совершает 3 типа колебаний относительно положения равновесия — одно нормально и два — тангенциально поверхности.

Н^{*s*}_{адс}, по [26, 27], можно представить растворенным в металле. В равновесном состоянии такой атом находится в плоскости, параллельной ДЭС и расположенной на расстоянии порядка 0,05 нм внутри кристаллической решетки.

Суммарная степень заполнения поверхности водородом $\theta_{\rm H}$ равна:

$$\boldsymbol{\theta}_{\mathrm{H}} = \boldsymbol{\theta}_{\mathrm{H}}^{r} + \boldsymbol{\theta}_{\mathrm{H}}^{s}.$$

и в пределе $\theta_{\rm H} \rightarrow 2$ [26]. θ^r и θ^s связаны через отношение $\theta^r_{\rm H}/\theta^s_{\rm H}$ в виде некоторой величины $K_{\rm P}$, которая является функцией статистической суммы состояний компонентов системы [26] и может меняться в широких пределах. В [28] постулировано, что $H^r_{\rm agc}$ ответственны за молизацию водорода (реакции (2) и (3)), $H^s_{\rm agc}$ — за его твердофазную диффузию (реакция (4)). Целесообразность использования подобного подхода для интерпретации экспериментальных данных показана в [29, 30].

Величина $\theta_{\rm H}$, в свою очередь, определяется природой лимитирующей стадии PBB, увеличиваясь в направлении:

реакция 1 \rightarrow реакция 2 \rightarrow реакция 3.

При энергетически однородной поверхности на восходящем участке кривой 1 с повышением $E_{\rm K}$ возрастают $\theta_{\rm H}$ и $i_{\rm H}$. В области ВС (кривая 1), процесс лимитируется латеральной диффузией при $\theta_{\rm H} < 1$ и $i_{\rm K}$ = const, то есть замедленной, видимо, становится реакция рекомбинации (4).

Рост сдвига потенциала в катодную область повышает скорость РВВ во всем изученном интервале C_{H^+} независимо от того, является лимитирующим разряд или рекомбинация, в то время как кинетика реакций (4) и (5) непосредственно не зависит от E_{K} . В этом случае ρ должно снижаться с катодным сдвигом потенциала входной стороны мембраны, что и наблюдается экспериментально.

Для интерпретации характера связи ρ с C_{H^+} учтем, что величины θ_{H}^r и θ_{H}^s существенно различно зависят от статистической суммы компонентов системы. Характер такой связи θ_{H}^i с константой γ , введенной Д. Хориути и Т. Тоя, и, в свою очередь, являющейся функцией статистической суммы, может меняться в широком интервале (рис. 5).

Когда в соответствии со статистической суммой системы $lg\gamma$ находится в интервале АБ (рис. 5), величина ρ мала, но должна иметь тенденцию к повышению с ростом $lg\gamma$, так как, с одной стороны, $\theta_{\rm H}^{s} << \theta_{\rm H}^{r}$, но с другой, степень заполнения поверхности формой ${\rm H}_{\rm anc}^{s}$ растет быстрее, чем ${\rm H}_{\rm anc}^{r}$. Подобная картина, видимо, достаточно хорошо соответствует $C_{\rm H^{+}}$ в интервале 0,99—0,10 моль/л. С дальнейшим снижением кислотности среды на порядок $lg\gamma$ достигает значений интервала БВ

Рис. 5. Зависимость $\theta_{\rm H}^r$ (1 и 2) и $\theta_{\rm H}^s$ (3 и 4) от lg γ . Кривые 1 и 3 — 50 °C; кривые 2 и 4 — 0 °C

(рис. 5), и $\theta_{\rm H}^s$ начинает возрастать гораздо быстрее, чем $\theta_{\rm H}^r$ и даже превышает ее по абсолютной величине. В этом случае ρ быстро растет, что и имеет место экспериментально.

Конечно, подобный подход не объясняет всех особенностей зависимости ρ от $C_{\rm H^+}$, при прочих постоянных условиях. В частности, исходя из принятых допущений, при величинах $\lg \gamma$ в интервале ВГ (рис. 5) величина ρ вновь должна снижаться, формально приближаясь к 0,5. Однако такая картина будет иметь место только в том случае, если $i_{\rm K}$ и $i_{\rm H}$ линейно зависят соответственно от $\theta_{\rm H}^r$ и $\theta_{\rm H}^s$, и на них не оказывают определяющего влияния многочисленные вторичные факторы. Кроме того, следует отметить, что при $\theta_{\rm H}^r = 1$ и $\theta_{\rm adc}^s = 1$ абсолютные двумерные концентрации $H_{\rm adc}^i$ могут существенно различаться в силу различной природы и плотности активных центров на поверхности и в подповерхностном слое.

Тем не менее, качественно экспериментально наблюдаемую картину такой подход позволяет удовлетворительно интерпретировать.

Твердофазная диффузия водорода в условиях анодной поляризации входной стороны мембраны. В условно безводных этиленгликолевых растворах при наличии 0,01 М HCl функция $i_{\rm H}=f(E_{\rm A})$ проходит через максимум ($E_{\rm A}=-0,26$ В) (рис. 6). Однако, начиная с $E_{\rm A}$, равного -0,22 В, поток диффузии водорода перестает зависеть от величины анодной поляризации. Рост $C_{\rm H^+}$ до 0,99 М HC1 в растворе сдвигает максимум к $E_{\rm A}=-0,22$ В.

Последующий рост $C_{\rm H_2O}$ на два порядка и переход от $C_2H_4(\rm OH)_2H^+$ к H_3O^+ приводит к следующему. В присутствии 0,01 М НС1 зависимость $i_{\rm H}$ от $E_{\rm A}$ проходит через максимум ($E_{\rm A}$ =-0,28 В), после чего

Рис. 6. Влияние анодной поляризации на поток твердофазной диффузии через мембрану из условно безводных этиленгликолевых растворов с составом электролита x M HCl + (1 - x) M LiCl, содержащих 1 мM C₅H₅N. x: 1 - 0,99; 2 - 0,01. Атмосфера — воздух, комнатная температура

наблюдается протяженный нисходящий участок (рис. 7). При увеличении C_{H^+} до 0,99моль/л i_{H} возрастает, а затем остается практически неизменной в интервале – 0,22 $\leq E_{\text{A}} \leq$ –0,14 В (рис. 7).

Положение максимума функции $i_{\rm H} = f(E_{\rm A})$, как правило, не зависит от состава и природы растворителя и электролита. Для интерпретации его появления необходимо учесть действие, по крайней мере, двух противоположно действующих факторов, связанных, видимо, только с поверхностными свойствами входной стороны стальной мембраны.

ЗАКЛЮЧЕНИЕ

Как указывалось ранее, на поверхности ряда металлов, в том числе и железа, существуют несколько типов адсорбированных атомов водорода, в том числе H_{ac}^{r} (надповерхностные) и H_{ac}^{s} (подповерхностные), которые энергетически существенно различаются и скорость реакции (3) пропорциональна $\theta_{\rm H}^r$, а процесса (4) — $\theta_{\rm H}^s$. Отношение $\theta_{\rm H}^r/\theta_{\rm H}^s$, при прочих равных условиях является, видимо, функцией заряда поверхности, так как дипольные моменты $H_{a,ac}^r$ (0,53×10⁻³⁰ Кл×м) и $H_{a,ac}^s$ (0,20×10⁻³⁰ Кл×м) различаются почти в три раза. Если с ростом $\Delta E_{\rm A}$ за счет изменения отношения $\theta_{\rm H}^r/\theta_{\rm H}^s$ скорость процесса (4) возрастает быстрее, чем снижается скорость реакции (3), то $i_{\rm H}$ будет расти. При их обратном соотношении *i*_н снижается. Наличие этих двух противоположно действующих факторов позволяет объяснить характер зависимости $i_{\rm H} = f(E_{\rm A})$. Дело в том, что исходя из требований электрохимической кинетики, с ро-

Рис. 7. Влияние анодной поляризации на поток твердофазной диффузии через мембрану из этиленгликолевых растворов ($C_{\text{воды, нех}}$ — 10 мас. %) с составом электролита *x* M HCl+(1-*x*) M LiCl, содержащих 1 мM C₅H₅N. *x*: *1* — 0,99; *2* — 0,01. Атмосфера — воздух, комнатная температура

стом $\Delta E_{\rm A} = E_{\rm A} - E_{\rm Kop}$ скорость РВВ и $\theta_{\rm H}^i$ должны уменьшаться. Но с увеличением заряда поверхности входной стороны стальной мембраны $\theta_{\rm H}^r$ будет снижаться быстрее, чем $\theta_{\rm H}^s$. Если в определенной области потенциалов рост скорости (4) превалирует над торможением (3), то $i_{\rm H}$ становится экстремальной функцией $E_{\rm A}$, что и наблюдается экспериментально.

Наличие кривых, на которых отсутствует зависимость $i_{\rm H}$ от $E_{\rm A}$, можно в первом приближении объяснить посадкой ${\rm H}^{i}_{\rm agc}$ в результате химического растворения стали [31], учитывая, что скорость химического растворения $i_{\rm X}$ не зависит от изменения анодного потенциала. Такой подход базируется, в частности, на том, что величины $i_{\rm X}$ [32] и $i_{\rm H}$, снижаются при переходе от этиленгликолевых к водно-этиленгликолевым растворам HCl. Отметим, что согласно представлениям, развитым в [31], источником ${\rm H}_{\rm agc}$ является деструкция хемосорбированных молекул растворителя.

В качестве вывода, отметим, что учет только надповерхностного водорода не позволяет интерпретировать всех наблюдаемых закономерностей. Анализ зависимостей, наблюдаемых при катодной и анодной поляризации входной стороны стальной мембраны, необходимо проводить, принимая во внимание наличие двух форм адсорбированного водорода.

Автор выражает искреннюю благодарность *д.х.н., профессору Вигдоровичу В.И. за обсуждение* работы.

СПИСОК ЛИТЕРАТУРЫ

1. *Кудрявцев В. Н., Балакин Ю. П., Ваграмян А. Т. //* Защита металлов. 1965. Т. 1. № 5. С. 477—481.

2. Маршаков А. И., Максаева Л. Б., Михайловский Ю. Н. // Защита металлов. 1993. Т. 29. № 6. С. 857— 868.

3. Назаров А. П., Лисовский А. П., Михайловский Ю. Н. // Защита металлов. 1996. Т. 29. № 32. С. 478—483.

4. Маршаков А. И., Рыбкина А. А., Скуратник Я. Б. // Электрохимия. 2000. Т. 36. № 10. С. 1245—1252.

5. *Тимонин В. А., Вигдорович В. И.* // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2000. Т. 5. № 2. С. 239—241.

6. Вигдорович В. И., Тимонин В. А. // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2000. Т. 5. № 3. С. 241—243.

7. *Фрумкин А. Н.* Электродные процессы (избранные труды). М.: Наука, 1987. 336 с.

8. *Фрумкин А. Н.* Перенапряжение водорода. М.: Наука, 1988. 240 с.

9. *Кузнецов В. В., Халдеев Г. В., Кичигин В. И.* Наводороживание металлов в электролитах. М.: Машиностроение, 1993. 244 с.

10. *Черненко В. Н., Якунина Т. Г. //* Электрохимия. 1982. Т. 18. С. 904—908.

11. Vigdorovich M. V., Tsygankova L. E. // Surface and Interface analysis. 2004. V. 36. № 8. P. 1083—1088.

12. Vigdorovich M. V., Tsygankova L. E. // J. of Electroanalytical Chemistry, 2004. V. 565. № 2. P. 351—357.

13. Вигдорович В. И., Цыганкова Л. Е., Дьячкова Т. П. // Химия и химическая технология. 2001. Т. 44. Вып. 2. С. 80—84.

14. Вигдорович В. И., Цыганкова Л. Е., Дьячкова Т. П. // Защита металлов. 2002. Т. 38. С. 514—519.

15. *Вигдорович М. В.* // Журнал физической химии. 2003. Т. 77. № 5. С. 946—950.

16. Вигдорович В. И., Копылова Е. Ю. // Электрохимия. 2004. Т. 40. № 2. С. 175—179.

Зарапина Ирина Вячеславовна — к.х.н., доцент кафедры «Химия», Тамбовский государственный технический университет; тел.: (4752) 532573, e-mail: irinazarapina@mail.ru 17. Вигдорович В. И., Цыганкова Л. Е., Алехина О. В. // Сорбционные и хроматографические процессы. Воронеж. 2005. № 4. Т. 5. С. 590—598.

18. *Маршаков А. И., Ненашева Т. А.* // Защита металлов. 2004. Т. 39. № 2. С. 128—132.

19. Вигдорович В. И., Цыганкова Л. Е., Дьячкова Т. П. // Электрохимия. 2002. Т. 38. № 6. С. 719—724.

20. Вигдорович В. И., Цыганкова Л. Е., Вигдорович М. В. // Конденсированные среды и межфазные границы. 2004. Т. 6. № 4. С. 340—355.

21. Вигдорович В. И., Цыганкова Л. Е., Зарапина И. В. и др. // Химия и химическая технология. 2006. Т. 49. № 6. С. 93—99.

22. Зарапина И. В., Шель Н. В., Копылова Е. Ю. и др. // Наукоемкие технологии. 2011. Т. 12. № 1. С. 54—65.

23. *Кардаш Н. В., Батраков В. В.* // Защита металлов 1995. Т. 31. № 4. С. 441—444.

24. Вигдорович В. И., Цыганкова Л. Е., Копылова Е. Ю. // Электрохимия. 2004. Т. 40. № 2. С. 175—179.

25. *Фрумкин А. Н.* // Журнал физической химии. 1937. Т. 10. № 4. С. 568—574.

26. *Хориути Д., Тоя Т.* Поверхностные свойства твердых тел / под ред. Грина М. М. М.: Мир, 1972. С. 11—103.

27. *Тоя Т., Ито Т., Иши Ш. //* Электрохимия. 1978. Т. 14. № 5. С. 703—714.

28. Вигдорович В. И., Дьячкова Т. П., Пупкова О. Л. и др. // Электрохимия. 2001. Т. 37. № 12. С. 1437—1445.

29. Вигдорович В.И., Цыганкова Л.Е., Копылова Е. Ю. // Электрохимия. 2003. Т. 39. №7. С. 836—843.

30. Вигдорович В. И., Цыганкова Л. Е., Алехина О. В. и др. // Электрохимия. 2005. Т. 41. № 10. С. 1178—1184.

31. Вигдорович В. И., Цыганкова Л. Е., Глотова Р. В. // Журнал прикладной химии. 1978. Т. 51. № 8. С. 1877—1878.

32. *Krishtalik L. I.* Hydrogen overvoltage and adsorption phenomena / Adv. Electrochem. and Electrochem. Engng (Ed. Delahay P). New York: Intersci. Publ., 1970. V. 7. P. 283—340.

Zarapina Irina V. — PhD (chemistry), senior lecturer of «Chemistry», department, Tambov State Technical University; tel.: (4752) 532573, e-mail: irina-zarapina@mail. ru