УДК 541.123.3:543.572.3

СТАБИЛЬНЫЕ ТРЕУГОЛЬНИКИ КСІ — КVO₃ — LiKM0O₄, KCl — LiVO₃ — LiKM0O₄ (Li₂M0O₄) ЧЕТЫРЕХКОМПОНЕНТНОЙ ВЗАИМНОЙ СИСТЕМЫ ИЗ ХЛОРИДОВ, МЕТАВАНАДАТОВ И МОЛИБДАТОВ ЛИТИЯ И КАЛИЯ

© 2011 Е.И. Малышева, И.К. Гаркушин, Т.В. Губанова, Е.И. Фролов

Самарский государственный технический университет, ул. Молодогвардейская 244, 443100 Самара, Россия Поступила в редакцию 21.02.2011 г.

Аннотация. Методом дифференциального термического анализа изучены фазовые равновесия в трех трехкомпонентных системах KCl — KVO₃ — LiKMoO₄, KCl — LiVO₃ — LiKMoO₄ (Li₂MoO₄), являющихся стабильными секущими треугольниками четырехкомпонентной взаимной системы Li, K || Cl, VO₃, MoO₄. Экспериментальным методом ДТА выявлены характеристики трех тройных эвтектических точек, описаны фазовые реакции для каждого элемента диаграммы состояния.

Ключевые слова: термический анализ, фазовые равновесия, эвтектика, Т-х диаграмма.

введение

Получение новых веществ и материалов, обладающих практически важными физическими свойствами, — одна из актуальных задач химии. Для ее решения большое значение имеет построение фазовых диаграмм, которые помогают в поиске и подборе электролитов с оптимальными термическими и физико-химическими свойствами. Несмотря на значительный интерес к перспективным солевым композициям на основе галогенидов щелочных металлов, используемых в качестве электролитов для химических источников тока, оставался неясным характер взаимодействия компонентов в системе Li, K|| Cl, VO₃, MoO₄.

Разбиение многокомпонентных систем на единичные составляющие является первым этапом их изучения. Поэтому целью нашей работы является проведение теоретических и экспериментальных исследований в четырехкомпонентной взаимной системе Li,K||Cl,VO₃,MoO₄ с разбиением ее на симплексы с применением теории графов [1], описание химического взаимодействия и фазовых равновесий в стабильных треугольниках KCl — KVO₃ — LiKMoO₄, KCl — LiVO₃ — LiKMoO₄ (Li₂MoO₄).

МЕТОДЫ ИССЛЕДОВАНИЯ И ИСПОЛЬЗОВАННЫЕ ВЕЩЕСТВА

Исследования проводили методом дифференциального термического анализа (ДТА) в стандартном исполнении [2]. Термоаналитические исследования проводили в платиновых микротиглях с использованием комбинированной Pt-Pt/Rhтермопары в интервале температур 300...900 °C. Холодные спаи термопар термостатировали при 0 °C в сосуде Дьюара с тающим льдом. Скорость нагревания и охлаждения образцов составляла 10—15 К/мин и регулировалась терморегулятором. Масса навесок составляла 0.3 г. Исходные соли, предварительно обезвоженные, были следующих квалификаций: LiCl, LiVO₃ и K₂MoO₄— «хч», KCl и Li₂MoO₄— «чда», KVO₃— «ч», индифферентное вещество — свежепрокаленный оксид алюминия — «чда». Все составы выражены в мольных процентах, температура — в °C.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

На рис. 1 приведена развертка граневых элементов четырехкомпонентной взаимной системы Li, K|| Cl, VO₃, MoO₄. Данная система включает в себя следующие подсистемы: девять двухкомпонентных, две трехкомпонентные и три трехкомпонентные взаимные системы. Данные по двойным и тройным системам взяты из [3], тройные взаимные системы Li, K|| Cl, MoO₄ и Li, K|| VO₃, MoO₄ изучены нами ранее.

Наличие соединения LiKMoO₄ на бинарной стороне $Li_2MoO_4 - K_2MoO_4$ усложняет фазовый комплекс системы Li, K || Cl, VO₃, MoO₄, посколь-

ку, также, как и другие компоненты, соединения является вершиной стабильного элемента.

Данные из рис. 1 позволяют записать матрицу смежности, представленную в табл. 1. Считаем призму состава системы графом, т. е. множеством вершин и множеством ребер, между которыми определена инцидентность (смежность). Составляется и решается логическое выражение, представляющее собой произведение сумм индексов несмежных вершин:

$$\prod_{\substack{i,j=1\\i>j}}^{n} (x_i + x_j),$$
 (1)

где *n* — общее число компонентов системы, включая все образующиеся двойные и тройные соеди-

нения; i, j — номера вершин; $x_{i,j}$ — индексы вершин.

Вершина x_1 связана со всеми последующими вершинами, поэтому в произведении (1) она отсутствует.

Вершина x_2 не связана с последующими вершинами x_4, x_5, x_6 , поэтому для нее произведение (1) имеет вид:

$$(x_2+x_4)(x_2+x_5)(x_2+x_6)$$

Вершина x_3 не имеет связи с вершинами x_4 и x_5 и произведение сумм для нее:

$$(x_3+x_4)(x_3+x_5)$$

Вершина x_4 не имеет связи с вершинами x_2 , x_3 и x_7 и произведение для нее имеет вид:

Рис. 1. Схема призмы составов четырехкомпонентной взаимной системы Li, K|| Cl, VO₃, MoO₄

$10O_4$
l

	Индексы	X1	X2	X3	X4	X5	X6	X7
KC1	X ₁	1	1	1	1	1	1	1
K ₂ MoO ₄	X ₂		1	1	0	0	0	1
KVO ₃	X ₃			1	0	0	1	1
LiCl	X_4				1	1	1	0
Li ₂ MoO ₄	X ₅					1	1	1
LiVO ₃	X ₆						1	1
D	X ₇							1

$$(x_4+x_2)(x_4+x_3)(x_4+x_7)$$

Рассуждая аналогичным образом, получим логическое выражение следующего вида:

$$(x_2+x_4)(x_2+x_5)(x_2+x_6)(x_3+x_4)(x_3+x_5)(x_4+x_7)$$
 (2)

Перемножаем суммы в произведении, учитывая закон поглощения, т. е. если из двух полученных произведений одно полностью входит во второе, то произведение с большим числом символов (вершин) исключается и в дальнейших расчетах не участвует. В результате преобразований выражение (2) примет вид:

$$(x_2+x_4x_5x_6)(x_3+x_4x_5)(x_4+x_7)$$

Перемножая, имеем

$$(x_{2}x_{3}+x_{2}x_{4}x_{5}+x_{3}x_{4}x_{5}x_{6}+x_{4}x_{5}x_{6})(x_{4}+x_{7}) =$$

$$=(x_{2}x_{3}x_{4}+x_{2}x_{3}x_{7}+x_{2}x_{4}x_{5}+x_{2}x_{4}x_{5}x_{7}+$$

$$+x_{3}x_{4}x_{5}x_{6}+x_{3}x_{4}x_{5}x_{6}x_{7}+x_{4}x_{5}x_{6}+x_{4}x_{5}x_{6}x_{7}) =$$

$$=x_{2}x_{3}x_{4}+x_{2}x_{3}x_{7}+x_{2}x_{4}x_{5}+x_{4}x_{5}x_{6}$$
(3)

Для каждого произведения (3) выпишем не входящие в него символы (вершины) из общего числа вершин политопа; в результате получим произведения символов вершин, отвечающих стабильным тетраэдрам:

$$x_1x_5x_6x_7 - \text{KCl} - \text{Li}_2\text{MoO}_4 - \text{LiVO}_3 - \text{LiKMoO}_4$$
$$x_1x_4x_5x_6 - \text{KCl} - \text{LiCl} - \text{Li}_2\text{MoO}_4 - \text{LiVO}_3$$
$$x_1x_3x_6x_7 - \text{KCl} - \text{KVO}_3 - \text{LiVO}_3 - \text{LiKMoO}_4$$
$$x_1x_2x_3x_7 - \text{KCl} - \text{K}_2\text{MoO}_4 - \text{KVO}_3 - \text{LiKMoO}_4$$

Общие грани каждой пары смежных стабильных тетраэдров определяют три стабильных секущих треугольника:

$$KCl - KVO_3 - LiKMoO_4,$$

 $KCl - LiVO_3 - LiKMoO_4$ и
 $KCl - LiVO_3 - Li_2MoO_4.$

Древо фаз системы Li, K || Cl, VO₃, MoO₄ линейное, состоит из четырех стабильных тетраэдров, связанных между собой секущими треугольниками. Оно представлено на рис. 2.

СТАБИЛЬНЫЙ ТРЕУГОЛЬНИК KCl — KVO₃ — LIKMoO₄

Проекция фазового комплекса на треугольник составов представлена на рис. 3. Треугольник образован двойной системой KCl — KVO₃ и двумя стабильными диагоналями KCl — LiKMoO₄ и KVO₃ — LiKMoO₄ трехкомпонентных взаимных систем: Li, K|| Cl, MoO₄ и Li, K|| VO₃, MoO₄ изученных в [3]. Все системы — эвтектические.

В целях установления характера взаимодействия компонентов и нахождения точек нонвариантного равновесия внутри стабильного треугольника было выбрано политермическое сечение FLв поле кристаллизации фторида лития (F — 60.0% KVO₃ + 40.0% KCl: L — 60.0% LiKMoO₄ + 40% KCl). По пересечению линий вторичной и третичной кристаллизации в точке \overline{E} , являющейся центральной проекцией направления на тройную эвтектику из полюса хлорида калия, можно опреде-

Рис. 2. Древо фаз системы Li, K || Cl, VO₃, MoO₄

лить соотношение компонентов в квазитройной эвтектике и ее температуру плавления. Исследованием политермического разреза KCl — \overline{E} — E, определен состав квазитройной эвтектической точки E 388 °C: 17.0% KCl + 72.2% KVO₃ + 5.4% Li₂MoO₄ + 5.4% K₂MoO₄; Максимальное поле кристаллизации представлено хлоридом калия — наиболее тугоплавким компонентом.

СТАБИЛЬНЫЙ ТРЕУГОЛЬНИК KCl — LiVO₃ — LiKMoO₄

Ограняющими элементами сечения KCl — $LiVO_3$ — $LiKMoO_4$ являются три стабильные диагонали (квазидвойные системы) KCl — $LiVO_3$, $LiVO_3$ — $LiKMoO_4$ и KCl — $LiKMoO_4$ трехкомпонентных взаимных систем Li, K|| Cl, VO₃ (изучена в [3]), Li, K|| VO₃, MoO₄ и Li, K|| Cl, MoO₄, изученных нами. Все системы — эвтектические.

Проекция фазового комплекса квазитройной системы на треугольник составов показана на рис. 4.

Для экспериментального исследования выбрано политермическое сечение $BC (B - 60.0\% \text{ LiK-} \text{MoO}_4 + 40.0\% \text{ KCl}: C - 60.0\% \text{ LiVO}_3 + 40\% \text{ KCl}),$ параллельное квазибинарной стороне LiKMoO₄-LiVO₃.

Точка пересечения разреза с эвтектической прямой определяет центральное направление \overline{E} на

квазидвойную эвтектическую точку *E*. Исследованием политермического разреза KCl — \overline{E} — *E*, определен состав квазитройной эвтектической точки *E* 406 °C: 36.0 % KCl + 62.1 % LiVO₃ + 0.95 % Li₂MoO₄ + 0.95 % K₂MoO₄; Максимальное поле кристаллизации представлено хлоридом калия — наиболее тугоплавким компонентом.

СТАБИЛЬНЫЙ ТРЕУГОЛЬНИК КСІ — LiVO₃ — Li₂MoO₄

Проекция фазового комплекса на треугольник составов представлена на рис. 5. Ограняющими элементами сечения KCl — LiVO₃ — Li₂MoO₄ являются две стабильные диагонали KCl — Li₂MoO₄ и KCl — LiVO₃ трехкомпонентных взаимных систем: Li, K || Cl, MoO₄ (изучена нами) и Li, K || Cl, VO₃ (изучена в [3]) и двойной системой Li₂MoO₄ — LiVO₃, также изученной в [3]. Все системы — эвтектические.

В целях установления характера взаимодействия компонентов и нахождения точек нонвариантного равновесия внутри стабильного треугольника было выбрано политермическое сечение MN в поле кристаллизации фторида лития (M - 60.0% LiVO₃ + 40.0% Li₂MoO₄: N - 60.0% KCl + 40% Li₂MoO₄). По пересечению линий вторичной и третичной кристаллизации в точке \overline{E} , являющейся центральной проекцией направления на тройную эвтектику из

Рис. 3. Проекция фазового комплекса на треугольник составов сечения KCl — KVO₃ — LiKMoO₄

Рис. 4. Проекция фазового комплекса на треугольник составов сечения KCl — LiVO₃ — LiKMoO₄

Рис. 5. Проекция фазового комплекса на треугольник составов сечения $KCl - LiVO_3 - Li_2MoO_4$

полюса хлорида калия, можно определить соотношение компонентов в квазитройной эвтектике и ее температуру плавления. Исследованием политермического разреза KCl — \overline{E} — E, определен состав квазитройной эвтектической точки E 376 °C: 34.8 % KCl + 52.2 % LiVO₃ + 13.0 % Li₂MoO₄. Максимальное поле кристаллизации представлено хлоридом калия — наиболее тугоплавким компонентом.

Фазовые реакции в эвтектиках для моновариантных кривых и дивариантных поверхностей всех квазитройных систем приведены в табл. 2.

выводы

В работе экспериментально определены состав и температура плавления сплавов, отвечающих трем тройным эвтектикам в квазитройных системах $KCl - KVO_3 - LiKMoO_4$, $KCl - LiVO_3 - LiKMoO_4$ (Li_2MoO_4), являющихся стабильными секущими треугольниками четырехкомпонентной взаимной системы Li, K || Cl, VO₃, MoO₄, описаны фазовые реакции для моновариантных кривых и дивариантных поверхностей всех квазитройных систем. Составы, отвечающие минимальным тем-

Элемент диаграммы	Характер равновесия	Фазовые равновесия						
KC — KVO ₃ — LiKMoO ₄								
Ε	Нонвариантное	ж≓KCl+KVO ₃ +LiKMoO ₄						
e_2E	Моновариантное	ж≓KCl+KVO ₃						
$e_4 E$	Моновариантное	ж≓KCl+LiKMoO₄						
e_5E	Моновариантное	ж≓KVO ₃ +LiKMoO₄						
$e_2 E e_4 e_2$	Дивариантное	ж≓КСl						
$e_4 E e_5 e_4$	Дивариантное	ж≓LiKMoO₄						
$e_2 E e_5 e_2$	Дивариантное	ж≓KVO ₃						
KCl — LiVO ₃ — LiKMoO ₄								
Ε	Нонвариантное	ж≓KCl+LiVO ₃ +LiKMoO ₄						
e_1E	Моновариантное	ж≓KCl+LiKMoO₄						
e_4E	Моновариантное	ж≓KCl+LiVO ₃						
$e_6 E$	Моновариантное	ж≓LiVO ₃ +LiKMoO₄						
$e_1 E e_4 e_1$	Дивариантное	ж≓KCl						
$e_1 E e_6 e_1$	Дивариантное	ж≓LiKMoO₄						
$e_4 E e_6 e_4$	Дивариантное	ж≓LiVO ₃						
KCl — LiVO ₃ — Li ₂ MoO ₄								
Ε	Нонвариантное	ж≓KCl+LiVO ₃ +Li ₂ MoO ₄						
e_1E	Моновариантное	ж≓KCl+Li₂MoO₄						
e_4E	Моновариантное	ж≓KCl+LiVO ₃						
e ₆ E	Моновариантное	ж≓LiVO ₃ +Li ₂ MoO ₄						
$e_1 E e_4 e_1$	Дивариантное ж≓КСl							
$e_1 E e_6 e_1$	Дивариантное	ж≓Li₂MoO₄						
$e_4 E e_6 e_4$	Дивариантное	ж≓LiVO ₃						

Таблица 2. Характеристики фазовых равновесий в квазитройных системах

пературам плавления, могут быть использованы как электролиты для химических источников тока и как растворители неорганических веществ.

Статья написана в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009—2013 годы, номер контракта П985 от 27 мая 2010 г.

Малышева Елена Игоревна — аспирант кафедры общей и неорганической химии, Самарский государственный технический университет; e-mail: mallena_05@mail.ru

Гаркушин Иван Кириллович — д.х.н., профессор, зав. кафедрой общей и неорганической химии, Самарский государственный технический университет; тел.: (846) 2784477, e-mail: baschem@samgtu.ru

Губанова Татьяна Валерьевна — к.х.н., доцент кафедры общей и неорганической химии Самарского государственного технического университета.

Фролов Евгений Игоревич — младший научный сотрудник кафедры общей и неорганической химии, Самарский государственный технический университет

СПИСОК ЛИТЕРАТУРЫ

1. *Оре О*. Теория графов. М.: Наука. Гл. ред. физ.мат. лит., 1980. 336 с.

2. *Егунов В. П.* Введение в термический анализ. Самара, 1996. 270 с.

3. Гаркушин И. К., Губанова Т. В., Петров А. С. и др. Фазовые равновесия в системах с участием метаванадатов некоторых щелочных металлов. М.: «Машиностроение-1», 2005. 118 с.

Malysheva Elena I. — the post-graduate student of the general and inorganic chemistry chair, Samara State Technical University; e-mail: baschem@sstu.samara.ru

Garkusnin Ivan K. — grand PhD (chemistry sciences), professor, head of general and inorganic chemistry chair, Samara State Technical University; tel.: (846) 2784477, e-mail: baschem@samgtu.ru

Gubanova Tatyana V. — PhD (chemistry sciences), associate professor of general and inorganic chemistry chair, Samara State Technical University

Frolov Evgenie I. — the younger scientific employee, assistant of general and inorganic chemistry chair, Samara State Technical University