УДК 621.315.592; 538.975

СТРУКТУРА И ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛЕНОК ОКСИДОВ ВАНАДИЯ НА КРЕМНИИ, ПОЛУЧЕННЫХ ЗОЛЬ-ГЕЛЬ МЕТОДОМ

© 2011 Е. А. Тутов¹, Д. А. Виниченко², Е. Е. Тутов³, Х. И. Аль-Кафаджи¹, Н. А. Румянцева¹, В. П. Зломанов²

¹ Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия ² Московский государственный университет, Ленинские горы 1, стр. 3, 119991 Москва, Россия ³OAO «Концерн «Созвездие», Воронеж, Россия

Поступила в редакцию 13.01.2011 г.

Аннотация. Высокоупорядоченные пленки оксидов ванадия с металлическим и полупроводниковым характером проводимости на подложках монокристаллического кремния с термическим слоем диоксида кремния и без него синтезированы золь-гель методом из растворов триэтоксиванадила $VO(OEt)_3$ в новом растворителе — метилцеллозольве $CH_3OCH_2CH_2OH$. Измерены высокочастотные вольт-фарадные характеристики полученных МОП структур. Исследовано влияние освещения на их электрическую емкость.

Ключевые слова: пленки оксидов ванадия, золь-гель метод, фазообразование, вольт-фарадные характеристики, фотоемкостный эффект.

ВВЕДЕНИЕ

Фазовый переход первого рода металл — полупроводник в соединениях d- и f-металлов, главным образом оксидов, интенсивно исследуется около сорока лет в связи с разнообразными возможностями его практических применений [1—3]. В системе ванадий-кислород насчитывается по разным источникам до двадцати соединений, начиная с субоксида V₉O и до высшего оксидаV₂O₅. Некоторые из них (в частности, V₂O₃ и VO₂) обладают ярко выраженным фазовым переходом, реализованным в коммерческих приборах, а также фактически являются модельными материалами для изучения этого явления. В то же время, в тонкопленочных материалах фазовый переход металлполупроводник имеет ряд специфических особенностей [4].

Свойства тонких пленок могут существенно отличаться от свойств массивного материала. При уменьшении характеристического параметра объекта (размера кристаллита, толщины пленки) до значений, сравнимых с расстоянием туннелирования для электронов, экспериментально наблюдаются структурные аномалии и изменения фазового состояния. Возрастающий вклад поверхностной энергии делает термодинамически возможным и

даже выгодным образование фаз с более высокой симметрией при более низких температурах и давлениях. В зависимости от метода получения металлоксидной пленки и последующих воздействий и обработок возможно формирование различных полиморфных модификаций таких оксидов, а также управление концентрацией и преобладающим типом дефектов в них.

Одним из распространенных и технологически гибких методов формирования пленок оксидов переходных металлов (ОПМ) является золь-гель процесс. К сожалению, научные основы золь-гель методов синтеза пленок оксидов ванадия разработаны недостаточно. Число растворителей ограничено метиловым, этиловым и изоамиловым спиртами, которые трудно очистить от следов влаги. В качестве исходных веществ в основном используют алкоголяты металлов, которые токсичны и легко гидролизуются в присутствии следовых количеств воды.

Эти особенности приводят к неустойчивости золей и коагуляции, неоднородности получающихся пленок, нарушению экологии окружающей среды. Не определены температурные, концентрационные, временные условия управления процессами золь-гель с последующим превращением

гелей в пленки с заданными составом, структурой и соответственно электрофизическими свойствами. Степень проявления уникальных свойств ОПМ существенным образом определяется условиями их синтеза. Преимущества золь-гель метода заключаются в возможности точного контроля стехиометрии на начальном этапе формирования пленок.

Целью наших исследований было изучение фазо- и дефектообразования в пленках оксидов ванадия при их формировании золь-гель методом на подложках из монокристаллического кремния с собственным оксидным слоем и без него и исследование электрофизических характеристик полученных МОП структур.

МЕТОДИКА

Пленки оксидов ванадия синтезировали из 0,5 М раствора триэтоксиванадила VO(OEt)₃ в метилцеллозольве CH₃OCH₂CH₂OH, нанося его методом центрифугирования на подложку. Порцию раствора 0,7 мл накапывали на подложку на центрифуге, затем включали ее на 15 секунд на скорости 3000 об/мин. При этом происходил гидролиз этоксида ванадила, и образовывался слой аморфных оксо- и гидроксополимеров.

После этого образец подвергали ИК-сушке в течение 7 минут при 190 °C для испарения избытка растворителя (пленки после этого остаются рентгеноаморфными). Затем образец отжигали в муфельной печи на воздухе при 500 °C для образования пентаоксида ванадия. Такой цикл повторяли 7 раз. Были получены однородные пленки (микроструктуру изучали с помощью растрового электронного микроскопа JEOL-6380LV) с хорошей адгезией толщиной до 10 микрометров на кремнии (100) со слоем диоксида кремния и на кремнии без оксидного слоя. Далее проводили восстановительный отжиг в токе смеси 5 % $\rm H_2 + 95$ % Ar при 450 °C (10, 20 и 30 минут).

Фазовый анализ образцов проводился на рентгеновском дифрактометре ДРОН-4,0 с использованием фокусировки по Брэггу-Брентано при отфильтрованном K_{α} -излучении кобальта со средневзвешенной длиной волны $\lambda = 0,179021$ нм при режиме трубки 30 кВ, 20 мА.

Прямые методы изучения структурно-фазовых характеристик металлоксидных пленок, к которым относится, прежде всего, дифракция рентгеновских лучей, могут быть дополнены измерением вольтфарадных характеристик гетероструктуры Si/MeO_x . По отношению к кремнию широкозонные (>3 эВ)

металлоксидные полупроводники, толщина которых, как правило, не превышает дебаевской длины экранирования, проявляют себя как диэлектрики, и высокочастотные вольт-фарадные характеристики (ВЧ ВФХ) имеют типичный для структур металл-диэлектрик-полупроводник (МДП) вид [5].

Метод ВЧ ВФХ, в отличие от рентгеноструктурных исследований, может быть применен для изучения параметров оксидов в аморфном состоянии, обладает большей локальностью анализа, дает наглядную информацию об электронных состояниях на межфазной границе кремний/оксид.

Электрофизические характеристики МОП структур Ag/VO_x/Si и Ag/VO_x/SiO₂/Si изучали методами C-V характеристик на частоте 1 МГц и импедансной спектроскопии в диапазоне частот 12 Гц — 100 кГц. Толщина диоксида кремния составляла 1 мкм. Нанесение металлических контактов (Ag) площадью 1 мм² не включало термического воздействия на образцы. Для освещения структур использовали белый свет с удельной мощностью $0.01~\rm BT/cm^2$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Восстановительный отжиг пленок высшего оксида ванадия на кремнии в течение 10 и 20 минут приводил к формированию высокоориентированных слоев (рис. 1) с металлическим характером проводимости, образующих с кремнием структуру типа диода Шоттки. Идентифицировать полученную фазу не удалось.

Увеличение длительности отжига до 30 минут привело к появлению на дифрактограмме рефлексов фаз оксидов VO_2 , V_2O_5 и V_6O_{13} с полупроводниковым характером проводимости. Вольтфарадные характеристики такой структуры Ag/VO./ Si имеют вид, типичный для МДП структур (рис. 2), где в роли диэлектрика выступает широкозонный оксидный полупроводник, низкую плотность поверхностных состояний на границе кремний — оксид и небольшой отрицательный поверхностный заряд. Влияние освещения сказывается в увеличении скорости генерации неосновных носителей заряда в кремнии, что приводит к образованию инверсионного слоя и насыщению емкости при отрицательном смещении, а неравновесное обеднение наступает при более высоких напряжениях [6].

Подобное поведение кремниевых МОП структур с несобственным оксидным слоем является достаточно типичным [7]. Отметим отсутствие особенностей в энергетическом спектре плотности поверхностных состояний на гетерогранице крем-

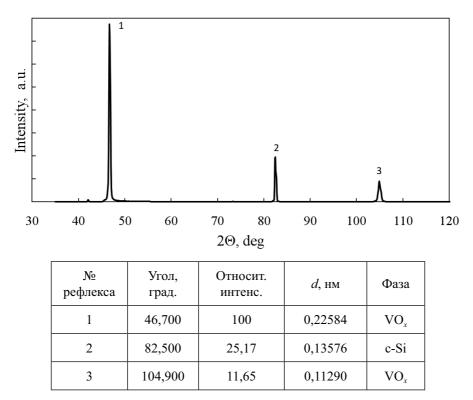
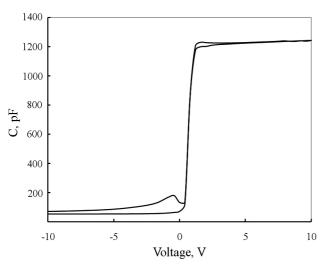



Рис. 1. Дифрактограмма пленки оксида ванадия на кремнии после восстановительного отжига в течение 20 минут

ний — оксид ванадия, которые могут наблюдаться для структур с анион-дефицитным оксидным слоем [5, 8].

Большой коэффициент перекрытия емкости, высокая крутизна и низкое пороговое напряжение переключения из режима обогащения в режим инверсии делают эту структуру перспективной для изготовления варикапов.

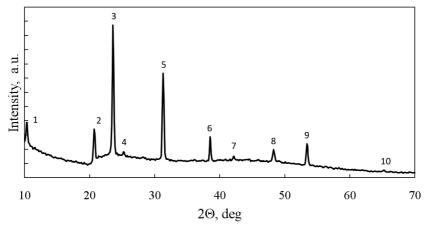


Рис. 2. ВЧ ВФХ структуры $Ag/VO_x/Si$ с пленкой оксида ванадия после восстановительного отжига в течение 30 мин (смесь фаз VO_2 , V_2O_5 и V_6O_{13}) без освещения (нижняя кривая) и при освещении белым светом с удельной мощностью $0.01~Br/cm^2$ (верхняя кривая)

В выбранных режимах формирования пленок на кремнии со слоем SiO_2 по данным рентгеноструктурного анализа (рис. 3) возможно получение двухфазного оксидного слоя (моноклинного V_6O_{13} и орторомбического V_2O_5), причем для фазы V_6O_{13} наблюдаются только рефлексы от плоскостей с индексами (00*I*).

Оксид V_2O_5 — полупроводник с шириной запрещенной зоны около 2,5 эВ, а V_6O_{13} при комнатной температуре должен иметь металлический характер проводимости, что, однако, в электрофизических характеристиках пленок не проявляется. При нагреве структуры до 200 °С на воздухе в течение одного часа не наблюдалось изменения оптического отражения в видимом диапазоне спектра, что косвенно свидетельствует об отсутствии фазового перехода в этом интервале температур. Отметим как существенный момент, что при этом не произошло изменений в картине дифракции рентгеновских лучей от данного образца, что свидетельствует о его устойчивости к окислению атмосферным кислородом.

Высокочастотные вольт-фарадные характеристики структуры $Ag/VO_x/SiO_2/Si$ (рис. 4) имеют более сложный вид, так как в ней два полупроводниковых слоя (оксид ванадия и кремний) разделены диэлектриком (диоксидом кремния), и приложение внешнего смещения изменяет область

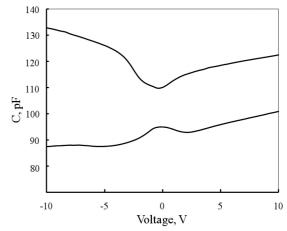

№ рефлекса	Угол, град.	Относит. интенс.	<i>d</i> , нм	Фаза	(hkl)
1	10,300	12,94	0,99718	V ₆ O ₁₃	(001)
2	20,700	25,32	0,49822	V_6O_{13}	(002)
3	23,600	100,00	0,43771	V_2O_5	(001)
4	25,200	9,07	0,41033	V_2O_5	(101)
5	31,300	65,41	0,33182	V_6O_{13}	(003)
6	38,500	19,97	0,27150	c-Si	
7	42,100	6,11	0,24921	V_6O_{13}	(004)
8	48,300	10,85	0,21878	V_2O_5	(002)
9	53,400	15,33	0,19921	V_6O_{13}	(005)
10	65,200	1,02	0,16614	V_6O_{13}	(006)

Рис. 3. Дифрактограмма пленки оксида ванадия на диоксиде кремния после восстановительного отжига в течение 20 мин

пространственного заряда в обоих полупроводниках. Для структуры $Ag/VO_x/SiO_2/Si$ наблюдается фотодиэлектрический эффект [9] — освещение вызывает быстрое и обратимое увеличение электрической емкости, что может быть использовано при разработке фотоварикапов. Максимальное изменение тангенса угла диэлектрических потерь структуры соответствует частоте тестирующего сигнала $100~\Gamma$ ц.

ЗАКЛЮЧЕНИЕ

На подложках монокристаллического кремния с термическим слоем диоксида кремния и без него из растворов триэтоксиванадила в новом растворителе — метилцеллозольве $CH_3OCH_2CH_2OH$ золь-гель методом синтезированы высокоупорядоченные пленки оксидов ванадия (эпитаксиальные с металлическим характером проводимости и

Рис. 4. ВЧ ВФХ структуры Ag/VO $_x$ SiO $_2$ /Si с пленкой оксида ванадия после восстановительного отжига в течение 20 минут (смесь фаз V $_2$ O $_5$ и V $_6$ O $_{13}$) без освещения (нижняя кривая) и при освещении белым светом с удельной мощностью 0,01 Вт/см 2 (верхняя кривая)

Е. А. ТУТОВ, Д. А. ВИНИЧЕНКО, Е. Е. ТУТОВ И ДР.

текстурированные с полупроводниковым). Вольтфарадные характеристики полученных МОП структур свидетельствуют об их перспективности для создания варикапов и фотоварикапов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бугаев А. А., Захарченя Б. П., Чудновский Ф. А.* Фазовый переход металл полупроводник и его применение. Л.: Наука. Ленингр. отд-ние, 1979. 183 с.
- 2. *Мотт Н. Ф.* Переходы металл изолятор. М.: Наука, 1979. 344 с.
- 3. Maekawa S., Tohyama T., Barnes S. E., et al. Physics of Transition Metal Oxides. Series: Springer Series in Solid-State Sciences, 2004. V. 144. 337 p.

- 4. *Pergament A. L., Velichko A. A., Berezina O.Ya., et al.* // J. Phys. Condens. Matter. 2008. V. 20. № 42. P. 422—424.
- 5. Тутов Е. А., Рябцев С. В., Тутов Е. Е. и др. // ЖТФ. 2006. Т. 76. Вып. 12. С. 65—68.
- 6. Ковтонюк Н. Ф., Сальников Е. Н. Фоточувствительные МДП-приборы для преобразования изображений. М.: Радио и связь, 1990. 160 с.
- 7. *Tutov E. A., Baev A. A., Ryabtsev S. V., et al.* // Thin Solid Films. 1997. V. 296. P. 184—187.
- 8. *Tutov E. A., Baev A. A.* // Applied Surface Science. 1995. V. 90. P. 303—308.
- 9. $Роках А. \Gamma.$ Фотоэлектрические явления в полупроводниках и диэлектриках. Саратов: Изд-во Саратовского ун-та, 1984. 158 с.

Тутов Евгений Анатольевич — д.х.н., доцент кафедры физики твердого тела и наноструктур, Воронежский государственный университет; тел.: (4732) 208363, email: tutov_ea@mail.ru

Виниченко Дмитрий Александрович — студент химического факультета, Московский государственный университет

Тутов Евгений Евгеньевич — к.ф.-м.н., с.н.с., ОАО «Концерн «Созвездие», Воронеж

Аль-Кафаджи Хусам Имад — магистрант кафедры физики твердого тела и наноструктур, Воронежский государственный университет

Румянцева Нина Анатольевна — ведущий инженер кафедры физики твердого тела и наноструктур, Воронежский государственный университет

Зломанов Владимир Павлович — д.х.н., профессор химического факультета, Московский государственный университет

Tutov Evgenie A. — grand PhD (chemistry sciences), associated professor of solid state physics and nanostuctures chair, Voronezh State University; tel.: (4732) 208363, e-mail: tutov_ea@mail.ru

Vinichenko Dmitry A. — student, Moscow State University

Tutov Evgenie E. — PhD, senior scientific employee, «Concern «Sozvezdie", Voronezh

Al-Khafaji H.I. — master student of solid state physics and nanostuctures chair, Voronezh State University

Rumyantseva Nina A.—leading engineer of solid state physics and nanostuctures chair, Voronezh State University

Zlomanov Vladimir P. — grand PhD (chemistry sciences), professor, Moscow State University