УДК 538.975

ВЛИЯНИЕ АНИОНА НА ПЕРЕХОДНЫЕ ПРОЦЕССЫ ПРИ ПЛАВЛЕНИИ ИОННЫХ КРИСТАЛЛОВ

© 2011 Е. С. Машкина

Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия Поступила в редакцию 09.03.2011 г.

Аннотация. Выявлено влияние аниона на переходные процессы при плавлении ионных кристаллов КСl, КВr и Кl. Установлено, что увеличение радиуса аниона приводит к увеличению температурно-временных интервалов существования переходных процессов пред- и постплавления и уменьшению интенсивности тепловых флуктуаций. Методом вейвлет-анализа проведена параметризация процессов формирования переходных фаз при плавлении ионных кристаллов. Проанализированы зависимости меры устойчивости кластерных структур переходных фаз при плавлении. Сценарий эволюции кластерной структуры имеет колебательный характер и зависит от радиуса аниона.

Ключевые слова: ионные кристаллы, предплавление, постплавление, тепловые флуктуации, вейвлет-анализ, кластер, устойчивость.

ВВЕДЕНИЕ

В теоретических работах, начиная с работы Френкеля Я. И., показано, что коллективное поведение флуктуаций вблизи температуры плавления T_m приводит к разрушению кристаллической фазы и образованию особого фазового состояния, часто называемого фазой предплавления [1]. С помощью моделирования плавления методом Монте Карло проанализировано возникновение особых областей вблизи T_m . Показано, что термическое возбуждение линейных и точечных дефектов приводит к образованию кластеров различных размеров [2]. При моделировании плавления кластеров методами молекулярной динамики также показана принципиальная роль коллективных переходных процессов, динамический характер возбужденных состояний [3, 4]. Получено достаточно большое количество экспериментальных данных, подтверждающих наличие особых областей вблизи температуры плавления. Переходные области при плавлении идентифицируются по аномалиям структурных, термодинамических, электрофизических, оптических, акустических свойств [5—8].

При изучении кинетики плавления веществ с различным типом химической связи методом ДТА при $T \ge 0.9 \, T_m$ нами выявлены термодинамические условия образования фаз пред- и постплавления [9—11]. Кооперативные переходные эффекты име-

ют экзотермический, скачкообразный, флуктуационный характер и рассматриваются как новый тип неравновесных фазовых переходов. Выделяемая теплота на этапе предплавления является теплотой диссипации $\Delta Q_{\text{pre-m}}$, а флуктуации выделяющегося тепла — флуктуациями теплоты диссипации. Низкочастотные макроскопические флуктуации теплоты диссипации переходных процессов при плавлении связаны с возникновением в системе долгоживущих временных корреляций, приводящих к структурированию вблизи T_m [12].

Целью настоящей работы является изучение влияния аниона на динамику структурирования фаз предплавления ионных кристаллов.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для исследования переходных процессов при плавлении были выбраны ионные кристаллы с различным анионом: KCl, KBr, KI. Кинетика плавления KCl, KBr, KI изучалась методом цифрового ДТА [9—11], который визуализирует динамику изменения тепловыделения при равновесных и неравновесных фазовых переходах вдоль температурновременной шкалы, включающая как мелкотак и крупномасштабные эффекты. Контролируемая полоса пропускания низких частот позволяет идентифицировать экзотермические, скачкообразные, флуктуационные переходные процессы при плавлении.

Термографирование проводилось в кварцевых сосудах Степанова, откачанных до вакуума 10^{-4} мм. рт.ст. при скорости нагревания v=5 К/мин, в качестве датчика использовались Pt-Pt/Rh (10 %) термопары. В эксперименте использовались ионные кристаллы КСl, KBr, KI с навесками 2 г марки XЧ.

Типичные кривые ДТА пред- и постплавления KCl, KBr, KI представлены на рис. 1. Как видно пред- и постпереходные эффекты имеют одинаковые признаки: экзотермичность пред- и постплавления, выделение тепла происходит в виде флуктуационных «прямоугольных» импульсов с резкими фронтами начала и конца эффекта.

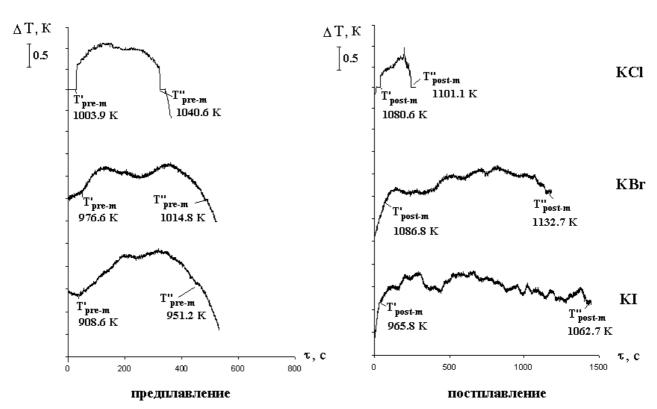
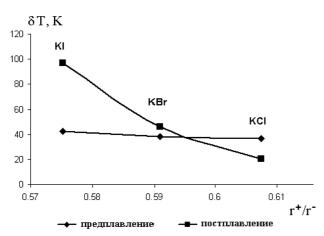
Количество теплоты, выделяемое при пред- и постплавлении, оценивалось относительно основного эффекта и определялось как модуль отношения площадей пред- и постэффекта P_1 и P_3 к площади основного эффекта P_2 . Расчет площади пика ДТА пред- и постэффекта проводился методом трапеции. Затем площади приводились на единицу массы.

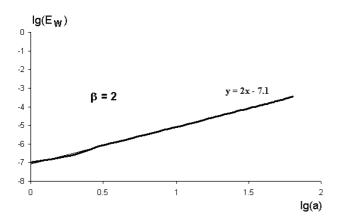
Переходные состояния характеризуются системой неравновесных термодинамических параметров: $T'_{\text{pre-m}}$, $T''_{\text{pre-m}}$ — температуры начала и конца эффекта предплавления; $\delta T_{\text{pre-m}}$ — температурный интервал предплавления; $T'_{\text{post-m}}$, $T''_{\text{post-m}}$ — температуры начала и конца эффекта постплавления;

 $\delta T_{
m post-m}$ — температурный интервал постплавления; $\Delta au_{
m pre-m}, \Delta au_{
m post-m}$ — длительности тепловых импульсов пред- и постплавления; $\Delta Q_{
m pre-m}, \Delta Q_{
m post-m}$ — теплота диссипации предплавления и постплавления, соответственно.

Хотя переходные процессы имеют одинаковое проявление для KCl, KBr и KI, выявляется существенная роль аниона в пред- и постплавлении. Судить о влиянии иона на переходные процессы при плавлении позволяют полуэмпирические корреляции между термодинамическими параметрами пред- и постплавления и отношением радиусов катиона и аниона (r^{+}/r^{-}) (рис. 2—3). Так, увеличение радиуса аниона в ряду кристаллов КСІ, КВг, КІ приводит к увеличению температурных интервалов переходных процессов $\delta T_{ ext{pre-m}},\,\delta T_{ ext{post-m}}$ и теплот диссипации пред- и постплавления $\Delta Q_{\text{pre-m}}$, $\Delta Q_{\text{post-m}}$. При этом выявлено, что в случае предплавления зависимости $\delta T_{\text{pre-m}}(r^+/r^-)$, $\Delta Q_{\text{pre-m}}(r^+/r^-)$ имеют линейный характер, а в случае постплавления $\delta T_{\text{post-m}}(r^+/r^-)$, $\Delta Q_{\text{nost-m}}(r^+/r^-)$ — нелинейный. Таким образом, выявляется существенная роль анионной подрешетки в большей степени в переходных процессах постплавления.

Временные ряды флуктуаций теплоты диссипации предплавления исследовались методом вейвлет-анализа, который позволяет выявлять ло-

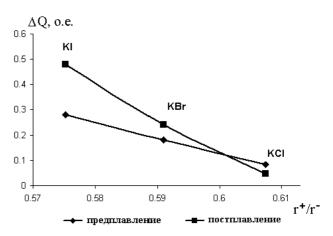




Рис. 1. Кривые ДТА переходных процессов при плавлении ионных кристаллов с общим катионом

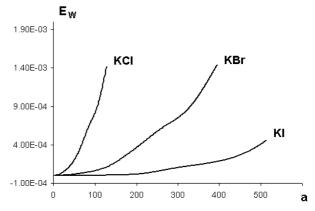
кальные особенности сигнала на разных масштабах, а, следовательно, изучать локальные свойства процесса, выделяя характеристические частоты флуктуационного процесса [13]. Каждый масштаб содержит информацию о сигнале в виде вейвлеткоэффициентов W(a,b), где b — параметр сдвига вейвлет-преобразования (или время τ), a — частотный масштаб вейвлета. В качестве базисной функции был выбран вейвлет Symlet8.

С помощью спектра энергии коэффициентов (интенсивности) вейвлет-преобразования $E_W(a,b) = W^2(a,b)$ — скейлограммы определялся коэффициент самоподобия β как угол наклона зависимости $\lg(E_w)$ к $\lg(a)$ (рис. 4). Скейлограмма соответствует сглаженному спектру мощности Фурье-преобразования. Для исследуемой группы веществ коэффициент самоподобия $\beta \sim 2$, что характерно для нелинейного броуновского шума [14]. Представление скейлограмм в линейном масштабе

Рис. 2. Корреляции между температурным интервалом пред- и постплавления KCl, KBr, KI и отношением радиусов катиона и аниона (r^+/r^-)


Рис. 4. Скейлограмма флуктуаций теплоты диссипации предплавления KCl (v=5 К/мин)

позволило выявить различие интенсивности процессов диссипации в исследуемых веществах (рис. 5). Полученные данные показывают, что с увеличением радиуса аниона в ряду КСl, КВr, КІ интенсивность флуктуаций теплоты диссипации закономерно уменьшается.


РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для моделирования фаз пред- и постплавления ионных кристаллов будем использовать подход, основанный на приближении Френкеля-Хайта [15] и развитый нами в [9—11, 16]. В основе данного подхода лежат представления о коллективных процессах, возбужденных состояниях и структурных перестройках в конденсированных средах вблизи точки плавления.

Перераспределение энергии вблизи T_m происходит спонтанно в малых объемах δV_i , в результате возникновения коррелированных тепловых

Рис. 3. Корреляции между теплотой диссипации пред- и постплавления KCl, KBr, KI и отношением радиусов катиона и аниона (r^+/r^-)

Рис. 5. Временная эволюция интенсивности флуктуаций теплоты диссипации эффектов предплавления ионных кристаллов

флуктуаций. Частота тепловых флуктуаций определяется через их время жизни:

$$f = \Delta t_{01}^{-1} \exp\left[-\frac{3A_i^3 z(T)}{2} \left(\frac{\delta T_{pre-m}}{T}\right)^2\right],$$

$$\Delta t_{01} \approx \frac{A_i^2 a}{c_0},$$
(1)

где t_{01} — время жизни тепловой флуктуации, A_i — характеристическая длина корреляции, z — теплоемкость на одну степень свободы, a — межатомное расстояние, $\delta T_{\rm pre-m}$ — температурный интервал предплавления, c_0 — скорость перераспределения энергии.

Через характеристическую длину корреляции A_i оценивался средний радиус кластеров r:

$$A_{i} = \sqrt[3]{\frac{(T_{pre-m})^{2}}{\delta T_{pre-m}^{2} z(T_{pre-m})}},$$

$$r = A \cdot a.$$
(2)

где $T''_{\text{pre-m}}$ — температура начала эффекта предплавления.

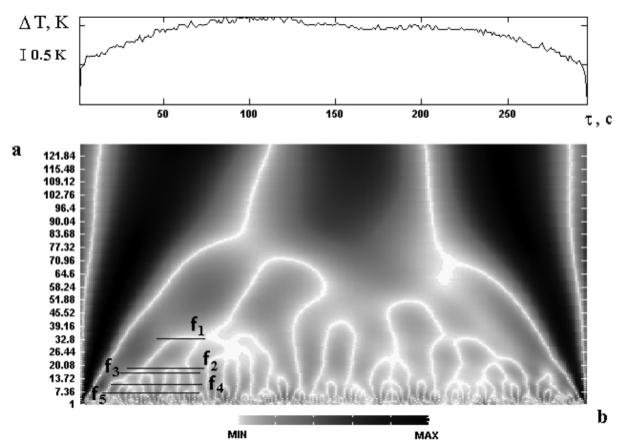
Поскольку $f \sim A_i$, то изменение частоты f будет характеризовать изменение размеров кластеров. При температурах ниже точки плавления $T << T'_{\text{pre-m}} < T_m$ время жизни тепловых флуктуаций Δt_{01} мало и существуют только единичные тепловые флуктуации. При возрастании температуры частота тепловых флуктуаций возрастает экспоненциально, в результате возникающих корреляций в фононной подсистеме происходит формирование кластеров объемом $\delta V_i \approx (A_i a)^3$. Оценки параметров фаз предплавления по формуле (1) для единичного объема при экспериментально определяемом нами $\delta T_{\text{pre-m}} = 30$ —50 К дают следующие значения интервала частот тепловых флуктуаций $f \sim 0.02$ —9 Гц.

Увеличение радиуса аниона r в ряду ионных кристаллов КСІ (r=1.81 Å), КВг (r=1.96 Å), КІ (r=2.2 Å) приводит к уменьшению радиусов кластеров в предплавлении. Радиус кластеров, формирующихся на этапе предплавления, рассчитанный по (2), составляет 23.1 Å (КСІ), 21.4 Å (КВг), 20.4 Å (КІ). Частотный интервал тепловых флуктуаций, рассчитанный по (1), совпадает частотным интервалом флуктуаций теплоты диссипации предплавления, определяемым методом вейвлет-анализа. В фазе постплавления ионных кристаллов КСІ, КВг и КІ происходит незначительное ослабление корреляций и уменьшение размеров кластеров. Для расчета радиусов кластеров, формирующихся на этапе постплавления, в (2) подставляем $T'_{\text{post-m}}$,

 $\delta T_{
m post-m}$ и z ($T'_{
m post-m}$). Радиус кластеров постплавления KCl составляет в среднем \sim 20 Å, радиус кластеров постплавления KBr $r\sim$ 19 Å, радиус кластеров постплавления KI $r\sim$ 17 Å. Следовательно, кластерные структуры пред- и постплавления достаточно близки между собой. Таким образом, частота тепловых флуктуаций отражает структурирование переходных фаз при плавлении и ее можно рассматривать как управляющий параметр.

Переход системы в неравновесное состояние связан с нарушением устойчивости системы. Для количественного описания устойчивости и адаптивности кластеризованных фаз предплавления к структурным перестройкам нами использован универсальный алгоритм самоорганизации структур в системах с управляемой обратной связью, примененный Ивановой В. С. для конденсированных сред [17]. Диссипативное состояние характеризуется функцией самоподобия F, определяемой через меру устойчивости системы Δ_i и показатель способности структуры к перестройке m:

$$F = \Delta_i^{1/m} \tag{3}$$


Функция самоподобия $\Delta_i^{1/m}$ базируется на законе деления целого на части и законе кумулятивной обратной связи. В качестве меры устойчивости структуры Δ_i , определяющей бифуркационные переходы, выделяется ряд универсальных мер устойчивости, отвечающих спектру чисел обобщенной золотой пропорции (обратные величины): 0.618, 0.465, 0.38, 0.324, 0.285, 0.255, 0.232, 0.213. Функция самоподобия контролирует адаптивность структуры к внешнему воздействию. Значение m=1 отвечает линейной обратной связи, при которой реализуются мультипликативные свойства системы, а $m \geq 2$ — нелинейной обратной связи, при которой реализуются репликативные свойства системы.

Выберем в качестве управляющего параметра частоту тепловых флуктуаций f. В этом случае мера устойчивости кластерной структуры фаз пред- и постплавления представляется в виде:

$$\Delta_i^{1/m} = f_i / f_{i+1} \,, \tag{4}$$

где f_i и f_{i+1} — предыдущее и последующее значение характерной частоты флуктуаций теплоты диссипации; т — показатель способности структуры к перестройке. Характерные частоты определяются программно сечением вейвлет-диаграммы по экстремумам для каждого временного интервала (рис. 6).

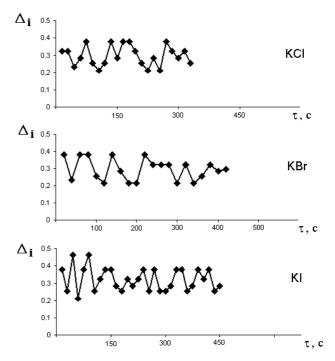

Определим меру устойчивости Δ_i и показатель обратной связи m кластерной структуры фазы пред-

Рис. 6. Кривая ДТА эффекта предплавления KCl и вейвлет-диаграмма флуктуаций теплоты диссипации (v=5 К/мин)

плавления ионных кристаллов KCl, KBr, KI. На рис. 7 приведены изменение меры устойчивости Δ_i кластерной структуры предплавления KCl, KBr, KI. Как видно из рис. 7, значения Δ_i , характеризующие образование кластерной структуры предплавления, имеют осциллирующий характер и отвечают спектру чисел обобщенной золотой пропорции. Для всех ионных кристаллов $\Delta_{i cp} = 0.324$.

Для выявления влияния аниона на формирование кластерной структуры предплавления ионных кристаллов KCl, KBr и KI проанализируем зависимости меры устойчивости Δ_i от f_i/f_{i+1} , т.е. спектр мер устойчивости кластерной структуры фазы предплавления, отражающий тип обратной связи. Анализ спектра мер устойчивости кластерной структуры фазы предплавления КС1 показывает, что показатель обратной связи т изменяется в пределе от 2 до 8. Значения показателя обратной связи $m \ge 2$ свидетельствуют о возникновении нелинейной обратной связи и образовании структур предплавления КСІ в условиях сильной корреляции по репликативному механизму (с улучшением структуры). Для КВг показатель обратной связи т изменяется в пределе от 2 до 16, т.о. для КВг также

Рис. 7. Зависимость управляющего параметра Δ_i кластерной структуры фаз предплавления ионных кристаллов KCl, KBr, KI от показателя способности структуры к перестройке m

характерно образование кластерных структур предплавления по репликативному механизму, как и в случае КС1. Дальнейшее увеличение радиуса аниона приводит к изменению спектра мер устойчивости кластерной структуры фазы предплавления. Для КІ, имеющим наибольший радиус аниона, помимо нелинейной ($m \ge 2$) обратной связи возникает линейная (m=1) и образование структур предплавления КІ происходит как по репликативному, так и мультипликативному механизмам.

Как и в случае предплавления значения Δ_i , характеризующие образование кластерной структуры постплавления KCl, KBr и KI, отвечают спектру чисел обобщенной золотой пропорции и имеют колебательный характер. Анализ мер устойчивости кластерной структуры фаз постплавления ионных кристаллов показал, что при переходе кристаллрасплав уменьшение радиусов кластеров связано с понижением устойчивости системы. Так для КС1 и KBr средняя мера устойчивости кластеров в постплавлении становится 0.285. Однако для KI средняя мера устойчивости при переходе кристаллрасплав остается неизменной $\Delta_{i \, {\rm cp}} = 0.324$, что вероятно связано с достаточно протяженной температурной областью существования эффекта постплавления.

Спектры мер устойчивости кластерных структур фаз постплавления ионных кристаллов KCl, KBr и KI показывают, что в фазе постплавления KCl, KBr наряду с нелинейной обратной связью $(m \ge 2)$ возникает линейная обратная связь (m=1), которая в случае предплавления отсутствует. Для KI характерно существование нелинейной и линейной обратной связи и для пред-, и для постплавления. Следовательно, в фазе постплавления у ионных кристаллов кластерная структура формируется по двум механизмам — репликативному и мультипликативному.

ЗАКЛЮЧЕНИЕ

Увеличение радиуса аниона в ряду ионных кристаллов KCl, KBr, KI приводит к уменьшению радиусов кластеров, формирующихся в пред- и постплавлении. При этом в условиях сильной кор-

реляции значения показателя обратной связи $m \ge 2$, что свидетельствует о возникновении нелинейной обратной связи и образовании кластерных структур переходных процессов, происходит по репликативному механизму (качественное изменение структуры вещества). В условиях слабой корреляции возникает как линейная (m=1), так и нелинейная $(m \ge 2)$ обратная связь, и образование кластерных структур пред- и постплавления происходит как по мультипликативному (геометрическое подобие системы), так и репликативному механизмам.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Френкель Я. И.* Кинетическая теория жидкости. Л.: 1975. 592 с.
- 2. *Gomez L., Dobry A., Geuting Ch., et al.* // Phys. Rev. Lett. 2003. V. 90. № 9. P. 095701-1—095701-4.
- 3. *Dinda P. T., Vlastou-Tsinganos G., Flytsanis N., et al.* // Phys. Rev. B. 1995. V. 51. №. 19. P. 13697—13704.
- 4. *Иванов-Шиц А. К., Мазо Г. Н., Поволоцкая Е. С. и др.* // Кристаллография. 2005. Т. 50. № 3. С. 498—501.
- 5. Жукова Л. А., Манов В. П., Попель С. И. и др. // Расплавы. 1992. № 5. С. 15—20.
- 6. *Hiroaki K.* //J. Phys. Sos. Jap. 1983. V. 8. P. 2784—2789.
- 7. *Kojima S.* // Jap J. Appl. Phys. Pt. 1. 1989. V. 28. P. 228—230.
- 8. *Майборода В. П., Шпак А. П., Куницкий Ю. А.* // Успехи физ. мет. 2003. Т. 4. №. 3. С. 123—233.
- 9. *Bityutskaya L. A., Mashkina E. S.* // Phase Transition. 2000. V. 71. P. 317—330.
- 10. *Битюцкая Л. А., Машкина Е. С. //* ЖТФ. 1999. Т. 69. № 12. С.57—61.
- 11. *Битюцкая Л. А., Машкина Е. С. //* ЖФХ. 2000. Т. 74. № 7. С.1189—1194.
- 12. *Grigera T. S., Israeloff N. E.* // Phys. Rev. Lett. 1999. V. 83. № 24. P. 5038—5041.
- 13. Астафьева Н. М. // УФН. 1996. Т. 166. № 11. С.1145—1170.
- 14. *Малинецкий Г. Г., Подлазов А. В.* // Известия вузов. Прикладная нелинейная динамика. 1997. Т. 5. № 5. С.89—106.
- 15. *Khait Yu.L.* // Phys. Stat. Sol. (b). 1985. V. 131. P. K19-K22.
- 16. *Lev B., Yokoyama H. //* Int. J. Modern Physics B. 2003. V. 17. №. 27. P. 4913—4933.
- 17. Иванова В. С. Введение в междисциплинарное материаловедение. М.: Сайнс-пресс. 2005. 208 с.

Машкина Екатерина Сергеевна — к.ф.-м.н, доцент, кафедра физики полупроводников и микроэлектроники, Воронежский государственный университет; e-mail: me22-1@phys.vsu.ru

Mashkina Ekaterina S. — PhD (physical and mathematical sciences), lecturer of semiconductor physic chair, Voronezh State University; e-mail: me22-1@phys.vsu.ru