УДК 541.123.3:543.572.3

ОБЪЕДИНЕННЫЙ СТАБИЛЬНЫЙ ТЕТРАЭДР LiF — Li₂MoO₄ — KCl — K₂MoO₄ ЧЕТЫРЕХКОМПОНЕНТНОЙ ВЗАИМНОЙ СИСТЕМЫ LI, K|| F, Cl, MoO₄

© 2011 Е.И. Малышева, И.К. Гаркушин, Т.В. Губанова, Е.И. Фролов

Самарский государственный технический университет, ул. Молодогвардейская 244, 443100 Самара, Россия

Аннотация. Методом дифференциального термического анализа изучены фазовые равновесия в объединенном стабильном тетраэдре LiF — Li₂MoO₄ — KCl — K₂MoO₄ четырехкомпонентной взаимной системы Li, K || F, Cl, MoO₄. Разграничены объемы кристаллизующихся фаз, описаны фазовые реакции для каждого элемента фазовой диаграммы.

Ключевые слова: термический анализ, фазовые равновесия, эвтектика.

введение

Большое значение для разработки новых материалов различного функционального назначения имеет исследование свойств смесей на основе галогенидов щелочных элементов. Прежде, чем изучить свойства, необходимо исследовать фазовые равновесия в системах с целью выявления солевых составов, которые могут быть рекомендованы к использованию в качестве расплавляемых электролитов для химических источников тока или теплоаккумулирующих веществ. Таким образом, целью данной работы явилось изучение фазовых реакций протекающих в системе и выявление характеристик нонвариантных точек.

МЕТОДЫ ИССЛЕДОВАНИЯ И ИСПОЛЬЗОВАННЫЕ ВЕЩЕСТВА

Термоаналитические исследования проводили методом дифференциального термического анализа (ДТА) [1] в платиновых микротиглях с использованием комбинированной Pt-Pt/Rhтермопары в интервале температур 300...900 °С. Холодные спаи термопар термостатировали при 0 °С в сосуде Дьюара с тающим льдом. Скорость нагревания и охлаждения образцов составляла 10-15 К/мин и регулировалась терморегулятором. Масса навесок составляла 0.3 г. Исходные соли, предварительно обезвоженные, были следующих квалификаций: LiF и K₂MoO₄ — «хч», КСІ и Li₂MoO₄ — «чда», индифферентное вещество — свежепрокаленный оксид алюминия. Все составы выражены в мольных процентах, температура — в °С.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходной информацией для проведения исследований стабильного тетраэдра явилось разбиение четырехкомпонентной взаимной системы Li, K || F, Cl, MoO₄ на симплексы, приведенное в [2]. На основании проведенного исследования были выявлены стабильные секущие и стабильные элементы данной четырехкомпонентной системы. Данная работа посвящена исследованию стабильного сечения LiF — Li_2MoO_4 — KCl — К₂МоО₄, представляющего собой два объединенных стабильных тетраэдра LiF — Li₂MoO₄ — KCl $- D_1$ и LiF - KCl $- K_2$ MoO₄ $- D_1 (D_1 - D_1)$ Li₂MoO₄·K₂MoO₄), элементами огранения которого являются стабильные треугольники: LiF — $Li_2MoO_4 - KCl, LiF - Li_2MoO_4 - K_2MoO_4, LiF$ - KCl - K₂MoO₄, KCl - Li₂MoO₄ - K₂MoO₄, a также секущий треугольник LiF — KCl — D₁. На рис. 1 приведена развертка граневых элементов стабильного тетраэдра LiF — Li₂MoO₄ — KCl — К₂МоО₄ четырехкомпонентной взаимной системы Li, K || F, Cl, MoO₄. Все граневые элементы были изучены нами ранее за исключением двойных систем, исследованных в [3, 4]. Как видно из рис. 1, все бинарные и квазитройные системы являются эвтектическими.

Для нахождения и определения характеристик точек нонвариантных равновесий в стабильном тетраэдре в объеме хлорида калия для экспериментального изучения выбрано двумерное политермическое сечение *abc* (*a* — 85 % KCl+15 % LiF, *b* — 85 % KCl+15 % Li₂MoO₄, *c* — 85 % KCl+15 % K_2 MoO₄), представленное на рис. 2.

Рис. 1. Развертка граневых элементов стабильного тетраэдра LiF — Li₂MoO₄ — KCl — K₂MoO₄ системы Li, K || F, Cl, MoO₄ и расположение сечения *abc*

Рис. 2. Сечение abc стабильного тетраэдра LiF — Li₂MoO₄ — KCl — K₂MoO₄ системы Li, K || F, Cl, MoO₄

Точки \overline{E}_1 , \overline{E}_2 , \overline{E}_5 , \overline{E}_6 являются проекциями соответствующих эвтектик, нанесенных из вершины хлорида калия на стороны сечения *abc*. В двумерном политермическом сечении *abc* выбран для экспериментального изучения одномерный политермический разрез MN: M — 85 % KCl+4,5 % LiF + 10,5 % Li₂MoO₄; N — 85 % KCl+4,5 % LiF + 10,5 % K₂MoO₄.

Фазы, кристаллизующиеся на *T-х* диаграмме разреза MN, показаны на рис. 3. Пересечение ветвей третичной кристаллизации определило положение проекций $\overline{\overline{E_1}}$ и $\overline{\overline{E_2}}$ четверных эвтектических точек. Изучением политермических разрезов

 $a \rightarrow \overline{\overline{E_1}} \rightarrow \overline{\overline{E_1}}$ и $a \rightarrow \overline{\overline{E_2}} \rightarrow \overline{\overline{E_2}}$ найдены точки $\overline{\overline{E_1}}$ и $\overline{\overline{E_2}}$ соответственно, которые являются проекциями четверных эвтектик на двумерное сечение *abc*. Таким образом, определено соотношение компонентов фторида лития, хлорида калия и молибдатов лития и калия в четверной эвтектике.

Определение состава четырехкомпонентных эвтектик сводилось к постепенному уменьшению концентрации хлорида калия без изменения известных соотношений других компонентов по разрезу, выходящему из вершины хлорида калия через точки \overline{E}_1 и \overline{E}_2 . Состав эвтектик: E_1 435 °C, 28 % KCl+13,32 % LiF+46,94 % Li₂MoO₄+11,74 %

Рис. 3. *Т-х-*диаграмма политермического разреза MN сечения *abc* тетраэдра LiF — Li₂MoO₄ — KCl — K₂MoO₄

Рис. 4. Эскиз объемов кристаллизации стабильного тетраэдра LiF — Li_2MoO_4 — KCl — K_2MoO_4

K₂MoO₄; *E*₂ 473 °C, 26 % KCl+8,88 % LiF+19,54 % Li₂MoO₄+45,58 % K₂MoO₄.

На рис. 4 представлен эскиз объемов кристаллизации стабильного тетраэдра LiF — Li₂MoO₄ — KCl — K₂MoO₄ четырехкомпонентной взаимной системы Li, K ||F, Cl, MoO₄. Объемы кристаллизации молибдата калия и фторида лития являются преобладающими. Для дивариантных плоскостей, линий моновариантного равновесия и четверных эвтектик объединенного тетраэдра приведены фазовые реакции (табл. 1).

выводы

1. Изучена диаграмма плавкости стабильного сечения LiF — Li₂MoO₄ — KCl — K₂MoO₄ четырех-компонентной взаимной системы Li, K \parallel F, Cl, MoO₄. Определены температура и состав двух четверных эвтектик. Минимальная температура эвтектики соответствует эвтектике E_1 — 435 °C.

2. Объем стабильного тетраэдра представлена пятью объемами кристаллизации: фторида и молибдата лития, хлорида и молибдата калия, а также соединения LiKMoO₄.

Статья написана в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009—2013 годы, номер контракта П985 от 27 мая 2010 г.

Таблица 1. Характеристики фазовых равновесий в объединенном стабильном тетраэдре $LiF - Li_2MoO_4$ — $KCl - K_2MoO_4$

Элементы диаграммы	Фазовые равновесия
поверхности:	дивариантные:
$e_3E_1E_2^{\Box}E_5e_3$	ж≓β-K ₂ MoO ₄ + D_1
$E_{5}E_{2}^{\ \Box}E_{3}e_{7}E_{5}$	$\mathbf{x} \rightleftharpoons \beta - K_2 MoO_4 + LiF$
$e_1E_1E_2{}^{\Box}E_3$	$\mathfrak{k} \rightleftharpoons \beta$ -K ₂ MoO ₄ +KCl
$E_4 E_1^{\ \Box} E_6 e_6$	$\mathbf{x} \rightleftharpoons D_1 + \mathrm{Li}_2 \mathrm{MoO}_4$
$E_{6}E_{1}^{\ \Box}E_{2}e_{4}$	ж≓KCl+Li₂MoO₄
$E_5 E_2^{\ \Box} E_1^{\ \Box} E_4$	$\mathbf{x} \rightleftharpoons \mathrm{LiF} + D_1$
линии:	моновариантные:
$E_2 E_1^{\Box}$	ж≓KCl+Li ₂ MoO ₄ +LiF
$E_4 E_1^{\Box}$	$\mathbf{x} \rightleftharpoons D_1 + \mathrm{Li}_2 \mathrm{MoO}_4 + \mathrm{LiF}$
$E_6 E_1^{\Box}$	ж≓KCl+Li ₂ MoO ₄ + D_1
$E_1^{\ \square}E_2^{\ \square}$	$\mathbf{x} \rightleftharpoons \mathrm{KCl} + D_1 + \mathrm{LiF}$
$E_1 E_2^{\Box}$	ж≓KCl+β-K₂MoO₄+LiF
$E_3 E_2^{\Box}$	$\mathbf{x} \rightleftharpoons D_1 + \beta - K_2 MoO_4 + KCl$
$E_5 E_2^{\Box}$	$\mathfrak{K} \rightleftharpoons D_1 + \beta - K_2 MoO_4 + LiF$
точки:	нонвариантные:
E_1^{\Box}	$\mathcal{K} \rightleftharpoons \mathrm{Li}_{2}\mathrm{MoO}_{4} + \mathrm{KCl} + \mathrm{LiF} + D_{1}$
E_2^{\Box}	$\mathcal{K} \rightleftharpoons \mathrm{KCl} + D_1 + \mathrm{LiF} + \beta - \mathrm{K}_2 \mathrm{MoO}_4$

КОНДЕНСИРОВАННЫЕ СРЕДЫ И МЕЖФАЗНЫЕ ГРАНИЦЫ, Том 13, № 3, 2011

Е. И. МАЛЫШЕВА, И. К. ГАРКУШИН, Т. В. ГУБАНОВА, Е. И. ФРОЛОВ

СПИСОК ЛИТЕРАТУРЫ

1. *Егунов, В. П.* Введение в термический анализ // Самара, 1996. 270 с.

2. Малышева Е. И., Губанова, Т. В., Гаркушин И. К. Фазовый комплекс системы Li, K|| F, Cl, MoO₄// Неорганич. соединения и функциональные материалы: сб. материалов Всеросс. конф. с элементами научн. школы для молодежи — Казань, КГТУ, 2010. 128 с.

Малышева Елена Игоревна — аспирант кафедры общей и неорганической химии, Самарский государственный технический университет; e-mail: mallena_05@mail.ru

Гаркушин Иван Кириллович — д.х.н., профессор, зав. кафедрой общей и неорганической химии, Самарский государственный технический университет; тел.: (846) 2784477, e-mail: baschem@samgtu.ru

Губанова Татьяна Валерьевна — к.х.н., доцент кафедры общей и неорганической химии, Самарский государственный технический университет

Фролов Евгений Игоревич — младший научный сотрудник кафедры общей и неорганической химии, Самарский государственный технический университет 3. Диаграммы плавкости солевых систем. Ч. III // Под ред. Посыпайко В. И., Алексеевой Е. А. М.: Металлургия, 1977. 204 с.

4. Гаркушин И. К., Губанова Т. В., Петров А. С., Анипченко Б. В. Фазовые равновесия в системах с участием метаванадатов некоторых щелочных металлов. М.: «Машиностроение-1», 2005. 118 с.

Malysheva Elena I. — post-graduate student of the general and inorganic chemistry chair, Samara State Technical University; e-mail: baschem@sstu.samara.ru

Garkusnin Ivan K. — grand PhD (chemistry sciences), professor, head of general and inorganic chemistry chair, Samara State Technical University; tel.: (846) 2784477, e-mail: baschem@samgtu.ru

Gubanova Tatyana V. — PhD (chemistry sciences), associate professor of general and inorganic chemistry chair, Samara State Technical University

Frolov Evgenie I. — younger scientific employee of general and inorganic chemistry chair, Samara State Technical University