УДК 535.37; 537.31; 537.9; 541.14; 54.03; 544.421.081.7

ВЛИЯНИЕ ЛЕГИРОВАНИЯ ДИСПРОЗИЕМ НА ЛЮМИНЕСЦЕНТНЫЕ И ФОТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ ХЛОРИСТОГО СЕРЕБРА

© 2010 К. В. Бочаров^{1,2}, Е. В. Рабенок¹, Г. Ф. Новиков^{1,2}, О. В. Овчинников², Н. В. Личкова³, Н. А. Тихонина¹, А. Н. Латышев²

¹ Институт проблем химической физики РАН, пр-т Н. Н. Семенова 1, 142432 Черноголовка, Россия ² Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия ³ Институт проблем технологии микроэлектроники и особо чистых материалов РАН, ул. Институтская 6, 142432 Черноголовка, Московская обл., Россия

Поступила в редакцию 17.07.2010 г.

Аннотация. Исследовано влияние легирования хлоридом диспрозия (до концентраций 10^{-1} мас.%) на СВЧ-фотопроводимость, фотолюминесценцию и фотостимулированную вспышку люминесценции (ФСВЛ) плавленных образцов хлорида серебра. Обнаружено, что легирование уже при концентрациях $5 \cdot 10^{-7}$ мас.% приводит к заметному изменению кинетики гибели фотогенерированных электронов (300 K) и спектров люминесценции, а также параметров ФСВЛ (77 K). При концентрациях легирующей добавки > 10^{-6} мас.% наблюдается полоса люминесценции $\lambda_{\text{max}} = 470$ нм. Показано, что эта полоса обусловлена заряженными [Dy^{*}_{Ag} · V'_{Ag}]^{*} ассоциатами. Длиноволновое плечо (570 нм) в спектрах люминесценции отнесено к внутрицентровым переходам в ионах Dy³⁺. Обнаружено влияние легирования образцов на скорость спада высвечиваемой светосуммы ФСВЛ при выдерживании образцов в темноте. Анализ показал, что это влияние обусловлено преобразованием дырочных ловушек в сторону увеличения доли глубоких. Оценена константа скорости реакции захвата электрона в ловушки, образующиеся при введении легирующей добавки: $k_{3ахв} = (3-5) \cdot 10^{-8}$ см³·с⁻¹. Предполагается, что ловушками являются ионы диспрозия Dy³⁺.

Ключевые слова: галогениды серебра, хлорид диспрозия, СВЧ-фотопроводимость, фотолюминесценция.

введение

Ионно-ковалентные кристаллы галогенидов серебра в силу своих уникальных свойств заняли особое место в разработках широкого спектра элементов оптических систем: для создания на их основе ячеек памяти с оптическим способом считывания информации [1], в качестве элементов пассивных лазерных сред [2], легированные ионами редкоземельных элементов галогениды серебра оказались перспективными для создания нового поколения также активных лазерных сред [3, 4]. Например, перспективным для создания активных лазерных сред оказался AgCl, легированный DyCl₃. Трехзарядный ион диспрозия имеет поглощение в области 0.9—1 мкм [5] и свечение в средней ИКобласти [6, 7].

Для эффективной работы большинства устройств важным оказывается энергетическое распределение электронных и дырочных ловушек, природа дефектов структуры, положение уровней, создаваемых легированием в запрещенной зоне полупроводника. Эти данные не только характеризуют свойства полупроводника, но и важны для понимания механизма деградации свойств материала в процессе эксплуатации и при хранении [8]. Подходом для получения таких данных может быть изучение кинетики и механизма процессов гибели фотогенерированных носителей тока в данных материалах. При этом могут быть использованы бесконтактные методы СВЧ-фотопроводимости и фотолюминесценции, обладающие высокой чувствительностью к донорно-акцепторным примесям. В данной работе проведено исследование влияния легирования диспрозием в диапазоне концентраций $(10^{-1}-5\cdot10^{-7} \text{ мас. }\%)$ на оптические и фотоэлектрические свойства кристаллов AgCl.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Высокочистый исходный хлорид серебра получали комплексным методом [9], включающим:

• очистку исходного азотнокислого серебра на неорганических сорбентах,

• зонную плавку азотнокислого серебра,

• получение галогенидов серебра осаждением из раствора AgNO₃ соответствующим галоидводородом,

• термообработку галогенидов серебра в атмосфере галоидагентов,

• зонную плавку галогенидов серебра.

Хлорид диспрозия получали из оксидов. Оксид растворяли в хлористоводородной кислоте, добавляли хлорид аммония и вводили в осажденный хлорид серебра. Полученную смесь высушивали под ИК лампой и затем в вакууме, постепенно повышая температуру для удаления хлорида аммония из смеси. Так готовили исходные смеси для разбавления. Уровень концентрации примеси хлорида диспрозия в таких образцах был 1 мас. %. Исходную смесь разбавляли высокочистым хлоридом серебра до соответствующей концентрации. Для получения разбавленной смеси гомогенного состава на каждом этапе разбавления через расплав барботировали инертный газ в течении 2-4 часов и закаливали до комнатной температуры в атмосфере инертного газа. Однородность состава полученных кристаллов по длине слитка определяли по данным ДТА с помощью дериватографа Q-1500 D.

Методика СВЧ-фотопроводимости (диапазон частот 9 ГГц, временное разрешение 50—100 нс) основана на регистрации изменений коэффициента отражения электромагнитных волн от резонатора TE_{101} -типа с образцом малого объема, помещенном в пучность электрического поля в центре резонатора, вызываемых воздействием на образец короткого импульса света, и детально описана в [10, 11]. Для возбуждения фотопроводимости использовали азотный лазер ЛГИ-505 (длина волны $\lambda = 337$ нм, длительность импульса $\tau_{имп} = 8$ нс). Интенсивность света изменяли в экспериментах светофильтрами. Измерения проводили при комнатной температуре.

Спектры стационарной фотолюминесценции измеряли на автоматической спектральной установке [12] в спектральном диапазоне 400—850 нм при температуре 77 К. Для возбуждения фотолюминесценции использовали лампу ДРК-120 с выделенной длиной волны 365 нм и интенсивностью ~10¹⁵ квант·с⁻¹см⁻². Первичное возбуждение фотостимулированной вспышки люминесценции (ФСВЛ) проводили светом той же длины волны, который использовался для возбуждения фотолюминесценции. Для измерений спектров ФСВЛ использовали освещение в диапазоне энергий от 0.6 до 2.0 эВ. ФСВЛ регистрировали либо в синезеленой полосе (λ =490 нм) либо в диапазоне 450—560 нм при температуре 77 К.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

СВЧ-ФОТОПРОВОДИМОСТЬ

Измерения на резонансной частоте

При включении света фотоотклик сначала резко нарастал, затем после окончания импульса света спадал до нуля. В чистом плавленом хлориде серебра спад фотоотклика состоял из двух достаточно различимых экспоненциальных компонент: «быстрой» и «медленной» с временами полуспада $\tau_{1/2} \sim 1$ мкс и 3.5 мкс, соответственно (рис. 1, кривая 1).

Легирование хлорида серебра хлоридом диспрозия существенно изменяло форму, амплитуду и время спада фотоотклика. Для примера на рис. 1 представлен спад фотоотклика для AgCl, легированного диспрозием в концентрации $5 \cdot 10^{-7}$ мас.% (кривая 2). Практически всегда спады фотоотклика в легированных образцах состояли из одной экспоненциальной компоненты. В табл. 1 приведены значения времен $\tau_{1/2}$. Зависимость амплитуды фото-

Рис. 1. Спады СВЧ фотопроводимости для плавленых образцов AgCl, чистого (1) и легированного DyCl₃ в концентрации 5·10⁻⁷ мас.% (2). $I_0 \sim 10^{14}$ квант см⁻² за импульс

N⁰	Образец	Время полуспада	Экспоненциальное время спада т
1	AgCl	1.85 мкс	1 мкс/5 мкс
2	AgCl — $5 \cdot 10^{-7}$ mac.% DyCl ₃	250 нс	200нс/550 нс
3	$AgCl - 10^{-6}$ мас.% $DyCl_3$	250 нс	150 нс
4	$AgCl - 10^{-5}$ мас.% DyCl ₃	400 нс	800 нс
5	$AgCl - 10^{-4}$ мас.% $DyCl_3$	300 нс	450 нс
6	$AgCl - 10^{-3}$ мас.% DyCl ₃	200 нс	300 нс
7	AgCl — 10 ⁻² мас.% DyCl ₃	450 нс	600 нс
8	AgCl — 10 ⁻¹ мас.% DyCl ₃	300 нс	400 нс

Таблица 1. Времена полуспада и экспоненциальные времена спада¹ в плавленых образцах AgCl в чистом и легированном DyCl₃

отклика от интенсивности падающего света для всех исследуемых образцов была линейна. При этом, характеристическое время не зависело от интенсивности падающего света. Эти данные свидетельствуют о том, что за спад ответственны процессы первого порядка кинетики (характеристические времена экспоненциальных спадов также приведены в табл. 1). В принципе, такими процессами могут быть как первичный захват свободного электрона, так и реакции локализованного электрона, испытавшего повторный перезахват и термическое освобождение из ловушек.

Частотная зависимость фотоотклика

Для того, чтобы выяснить, какой электрон вносит вклад в СВЧ-фотоот-клик — свободный (ни разу не захваченный в ловушку) или повторно вышедший из ловушки — анализировали зависимость фотоотклика от частоты СВЧ-генератора в разные моменты времени [11, 13]. Форма зависимостей $\Delta P(f, t)$ менялась при изменении концентрации DyCl₂. Для примера на рис. 2 представлена зависимость фотоотклика от частоты СВЧ-генератора в момент времени 200 нс после начала импульса для нелегированного образца AgCl. Из рисунка видно, что форма частотной зависимости несимметрична, что свидетельствует о вкладе в фотоотклик $\Delta P = \Delta P_{O} + \Delta P_{D}$ не только изменения нагруженной добротности резонатора, Q_{l} , но и сдвига резонансной частоты, δf_0 .

Сплошной линией на рис. 2 показан результат приближения экспериментальной зависимости разностью двух функций Лоренца, соответствующих случаю хорошего согласования резонатора с волноводом. Такие расчеты, будучи проведенными для разных моментов времени, позволяют сравнить скорости спадов изменения добротности и сдвига резонансной частоты. Для примера на рис. 3 показан результат такого расчета для чистого AgCl. Чтобы избежать ошибок, вызванных влиянием сдвига резонансной частоты на величину отраженной мощности на резонансной частоте

Рис. 2. Зависимость фотоотклика от частоты СВЧ генератора для момента времени 200 нс после начала импульса в плавленом образце AgCl. $I_0 = 7.7 \cdot 10^{13}$ квант·см⁻² за импульс. Резонансная частота $f_{\rm pes} = 9084$ МГц. Сплошная линия — численный расчет

¹ Для образцов AgCl и AgCl 5 · 10⁻⁷ мас.% DyCl₃ приведены времена спадов «быстрой» и «медленной» компонент.

Рис. 3. Спады сдвига резонансной частоты $\delta f_0(l)$ и изменения добротности $\delta(1/2Q)(2)$ для поликристаллического AgCl

[14], в качестве характеристики концентрации электронов, вместо ΔP_Q , показана величина $\delta(1/2 Q)$. Можно видеть из рис. 3, что скорости спадов δf_0 и $\delta(1/2 Q)$ до момента времени $\Delta \tau \sim 750$ нс различаются приблизительно в два раза, а на больших временах практически совпадают. Можно предположить две причины такого различия. Первая — это дополнительный вклад в фотоотклик носителя тока другого знака. Такая ситуация обсуждалась в [15] для СВЧ-фотопроводимости бромида серебра, но не нашла убедительной поддержки.

Вторая, более вероятная версия — отсутствие равновесия по электронам между ловушками и зоной проводимости до момента времени $\Delta \tau$ и установление равновесия при больших временах. Такой вывод следует из соотношения [14]:

$$-\frac{\delta f_0}{f_0} \sim \delta \varepsilon' + \frac{\left(\delta \varepsilon''\right)^2}{\varepsilon' + 2},\tag{1}$$

принимая, что при не сильном возмущении резонатора внешним воздействием мнимая часть комплексной диэлектрической проницаемости, \mathcal{E}'' , пропорциональна $\delta(1/2 Q)$. Так как в области более 750 нс δf_0 и $\delta(1/2 Q)$ спадают с одинаковой скоростью (см. рис. 3), то, согласно (1), за δf_0 ответственно изменение действительной части диэлектрической проницаемости $\delta \mathcal{E}'$. Симбатность изменений сдвига частоты и добротности в этом случае, вероятно, свидетельствует об установившемся равно-

весии по электронам между зоной проводимости и ловушками ко времени 750 нс [15].

Аналогичный анализ для легированных образцов показал, что первичный захват свободного электрона наблюдается только при малых концентрациях примеси. При концентрациях больших 10^{-5} мас.% DyCl₃ наблюдаются лишь «вторичные» процессы. Таким образом, быструю компоненту спада следует считать отражением процесса гибели свободного электрона по реакции:

$$e^- + tr \to e^-_{tr}.$$
 (2)

Здесь e^- — свободный электрон, tr — электронная ловушка, e_{tr}^- — захваченный электрон.

ЛЮМИНЕСЦЕНЦИЯ

Для получения сведений о природе образующихся при легировании дефектов в работе были проведены исследования фотолюминесценции и фотостимулированной вспышки люминесценции (ФСВЛ) образцов AgCl — DyCl₃.

Зависимость формы спектров фотолюминесценции кристаллов AgCl от концентрации DyCl₃

Легирование хлорида серебра, уже начиная с минимальных концентраций хлорида диспрозия, изменяло спектр фотолюминесценции. Но значительные изменения происходили, начиная с концентрации 10^{-4} мас.% DyCl₂ и выше. На рис. 4 *а*—*г* показаны спектры люминесценции образцов при разных уровнях легирования. В спектре чистого хлорида серебра наблюдалась несимметричная полоса люминесценции с $\lambda_{max} = 505$ нм (рис. 4 *a*) и коротковолновая полоса с максимумом менее 425 нм. На рис. 4 б-г приведены спектры люминесценции образцов, легированных диспрозием. Форма спектров зависела от уровня легирования, и это позволило выделить в спектрах повторяющиеся полосы 570 нм, 530 нм, 496 нм, 470 нм. На рис. 4 а-г показаны разложения спектров на полосы гауссовой формы [16]. Согласно литературным данным полосу с $\lambda_{\max} = 496$ нм можно связать с вакансиями серебра [17], а полосу с $\lambda_{max} = 530$ нм с йодными центрами [18, 19].

Сразу заметим, что интенсивности этих полос слабо зависели ($\lambda_{max} = 470$ нм (рис. 5), $\lambda_{max} = 496$ и 570 нм) или вообще не зависели ($\lambda_{max} = 530$ нм см. рис. 5) от концентрации вводимого DyCl₃. Независимость интенсивности «йодной» полосы от уровня легирования вполне соответствует методу приготовления образцов путем разбавления. Коротковолновую полосу в чистом хлориде серебра

с $\lambda_{max} < 425$ нм, вероятно, следует отнести к собственной люминесценции. В спектрах легированных образцов эта полоса не проявляется.

Полосу с $\lambda_{max} = 570$ нм, по-видимому, можно интерпретировать как проявление излучательного внутрицентрового перехода в ионе диспрозия. Для иона Dy³⁺ наблюдали свечение с максимумами в области 490—502, 550 нм в различных кристаллических матрицах (что соответствует переходу между термами ⁴F_{9/2} и ⁶H_{15/2}) [7, 20]. Известно, что влияние кристаллического поля основы на переходы 5*d*—4*f* достаточно сильное [7], величина энергетического зазора между уровнями 5*d* и 4*f* может изменяться в зависимости от матрицы. Кроме того, может изменяться вероятность излучательного перехода под влиянием поля кристаллической решетки: могут возникать либо сниматься запреты на тот или иной переход. Можно предположить, что полоса $\lambda_{max} = 570$ нм обусловлена излучательными переходами между уровнями 5*d* и 4*f* иона диспрозия, возможно, близкими к ⁴F_{9/2} и ⁶H_{15/2} (являющимися верхним и нижним энергетическими уровнями, соответственно), для которых в матрице хлорида серебра имеется сравнительно высокая вероятность излучательной релаксации возбуждения. Сравнительно большая (0.25 эВ) энергетиче-

Рис. 4. Спектры фотолюминесценции и разложение спектров на полосы гауссовой формы: чистого AgCl (a) и легированного различными концентрациями DyCl_3 (δ —z). Концентрации DyCl_3 , мас.%: δ — $5 \cdot 10^{-7}$, s— 10^{-4} , z— 10^{-2} . Длина волны возбуждения фотолюминесценции 365 нм, интенсивность ~ 10^{15} квант с⁻¹см⁻²

Рис. 5. Зависимость амплитуды максимума пика люминесценции с $\lambda_{\text{max}} = 530$ нм (1) и $\lambda_{\text{max}} = 470$ нм (2) от концентрации легирующей добавки

ская полуширина полосы $\lambda_{\rm max}\!=\!570$ нм может быть связана с неодинаковым окружением ионов диспрозия, распределенных по объему исследуемого образца. Причиной этого мог послужить тот факт, что использованные образцы являлись плавлеными, и кристаллиты, составляющие образец, в таком случае ориентированы друг относительно друга произвольным образом. При таких условиях следует ожидать, что влияние окружения на ионы Dy³⁺ в разных областях матрицы основы будет различным. То есть, происходит усиление квазистатического уширения спектральных линий по сравнению со случаем строго упорядоченной кристаллической решетки. Предположению о природе свечения с $\lambda_{max} = 570$ нм вполне соответствует наблюдаемое небольшое увеличение интенсивности полосы с ростом уровня легирования.

Полоса с $\lambda_{\text{max}} = 470$ нм, по-видимому, связана с образующимися ассоциатами вакансий серебра и ионов диспрозия. Предположительный механизм образования ассоциатов следующий. Замещение иона Ag⁺ ионом Dy³⁺ в решетке AgCl приводит к образованию дефекта Dy^{*}_{Ag}. Поскольку кристалл должен быть электронейтральным, для компенсации положительного заряда данного дефекта образуются две вакансии серебра, имеющие отрицательный заряд (V'_{Ag}):

$$DyCl_{3} \xrightarrow{AgCl} Dy_{Ag}^{\bullet\bullet} + 3Cl^{x} + 2V_{Ag}^{\prime}.$$
 (3)

Чем выше концентрация легирующей добавки, тем больше вероятность, что дефекты Dy_{Ag} и V'_{Ag} окажутся близко расположенными, благодаря чему

образуются их ассоциаты — либо заряженные вида $[Dy^{\bullet}_{Ag} \cdot V'_{Ag}]^{\bullet}$, либо нейтральные вида $[Dy^{\bullet}_{Ag} \cdot 2V'_{Ag}]^{*}$. В литературе имеются данные экспериментов, подтверждающих образование подобных ассоциатов в хлориде серебра при введении в его объем ионов Cd^{2+} [21]. Сделанному предположению соответствует рост интенсивности полосы с $\lambda_{max} = 470$ нм с увеличением уровня легирования (рис. 5).

Зависимость ФСВЛ от концентрации вводимой примеси DyCl₃ и времени выдерживания образцов в темноте

Спектры стимуляции фотостимулированной вспышки люминесценции имели максимум возбуждения при 1.8—1.9 эВ как для амплитуды светосуммы ФСВЛ, так и для полной светосуммы. Во вставке рис. 6 для примера приведены спектры стимуляции ФСВЛ исходного AgCl (кривая 1) и легированного Dy³⁺ в концентрациях 10⁻⁵ (кривая 2) и 10-4 мас.% (кривая 3) для полной высвеченной светосуммы. На основном рис. 6 приведено отношение полной светосуммы S, при энергии стимуляции 1.8 эВ, S(1.8), к светосумме при 1.3 эВ, S(1.3), в зависимости от концентрации добавки (такой же вид имели зависимости отношения полной светосуммы при энергии стимуляции 1.8 эВ к светосумме при 1.4—1.7 эВ). Видно, что при увеличении концентрации диспрозия происходит постепенное уменьшение количества электронных ловушек с энергией возбуждения 1.3 эВ (то же относится к ловушкам с энергиями 1.4—1.7 эВ).

Выдерживание образцов в темноте уменьшало светосумму ФСВЛ, *S*. На рис. 7 показаны зависи-

Рис. 6. Зависимость отношения светосумм Φ CBЛ S(1.8)/ S(1.3) от концентрации легирующей добавки. Во вставке показаны спектры полной светосуммы Φ CBЛ для чистого AgCl (1) и легированного DyCl₃ в концентрациях 10⁻⁵ (2) и 10⁻⁴ (3) мас.%

Рис. 7. Зависимость полной светосумм ФСВЛ при возбуждении светом с E = 1.8 эВ от времени темнового интервала для чистого AgCl (1) и легированного DyCl₃ в концентрациях 10^{-5} (2) и 10^{-4} (3) мас.%

мости полной светосумм ФСВЛ при энергии стимуляции E = 1.8 эВ от времени темнового интервала для чистого AgCl и легированного DyCl, в концентрациях 10⁻⁵ и 10⁻⁴ мас.%. Из рисунка видно, что скорость спада S в темноте в легированных образцах была более чем в 10 раз меньше, чем в нелегированном. Темновые изменения могут происходить в результате того, что один из зарядов локализован в мелких ловушках. Оценка показывает, что глубина этих ловушек должна быть не больше 0.23 эВ. В литературе нет указаний на присутствие в значительном количестве таких мелких электронных ловушек в хлориде серебра. Можно было бы предположить что такие ловушки создаются серебряными кластерами, формирующимися в процессе экспозиции светом [22]. Однако в [22] формирование таких кластеров происходило при значительных экспозициях, больших 4·10⁶ эрг/см⁻², что не соответствовало условиям наших экспериментов. С другой стороны, величины глубин ловушки меньше 0.23 эВ обнаруживались другими авторами для дырок [1, 23]. Поэтому естественно связать темновые изменения с термическим освобождением дырок из ловушек [1].

Неожиданным является зарегистрированное увеличение времени спада в легированных образцах по сравнению с чистым. Действительно, в работе [1] наблюдался противоположный эффект: при легировании йодом время спада уменьшалось. Это связывалось с тем, что при легировании йодом возникали мелкие дырочные ловушки. Однако концентрации вводимых примесей в этой работе были на 2 порядка больше чем в нашем случае ($\sim 10^{21}$ см⁻³). Такая концентрация действительно могла конкурировать со старыми ловушками в исходном хлориде серебра. В нашем случае конкуренция между ловушками возможна только в области больших концентраций легирующей примеси. При более низких концентрациях единственно возможным вариантом может быть процесс преобразования «старых» дырочных ловушек в «новые» с глубиной более 0.23 эВ.

Существенные изменения в скорости спадов (с учетом точности измерений) начинаются с концентрации 10⁻² мас.% DyCl, (рис. 7). При этом, в легированных образцах возникают существенные изменения концентрации ассоциатов ионов диспрозия и серебряных вакансий, которые могут служить глубокими дырочными ловушками. Учитывая, что примесь йода присутствует в исследованных кристаллах в концентрации 0.5—1 мас.% (это следует из положения максимума люминесценции чистого хлорида серебра) [19], новые ловушки-ассоциаты могут составить конкуренцию йодным мелким дырочным ловушкам. Захваченная на такой центр дырка во время темновой паузы не сможет освободиться и прорекомбинировать с электроном, локализованным на глубокой электронной ловушке. В результате скорость темнового спада должна уменьшиться.

На рис. 8 приведен спектр ФСВЛ образца AgCl 10^{-2} мас.% DyCl₃ в диапазоне от 450 до 560 нм при энергии возбуждения в максимуме (1.8 эВ) (кривая 2). В отличие от ФСВЛ, спектр люминесценции данного образца (рис. 8, кривая 1) имеет как пик при $\lambda_{max} = 485$ —490 нм, так и плечо в области при $\lambda = 520$ —530 нм. Таким образом, в полосе с максимумом при 485 нм (неразложенный спектр) наблюдается вспышка люминесценции, то есть, свечение в этой области носит рекомбинационный характер. В области же, где кривая 1 имеет плечо, вспышка отсутствует. Этот факт указывает на то, что здесь люминесценция является внутрицентровой.

Преобразование дефектов при легировании

Результаты исследования люминесценции и ФСВЛ указывают на имеющий место процесс преобразования дефектов в хлориде серебра при легировании диспрозием. Естественно ожидать, что

Рис. 8. Спектры фотолюминесценции (*1*) и ФСВЛ, снятый на фиксированных длинах волн в диапазоне от 450 до 560 нм при энергии возбуждения 1.8 эВ (*2*) для образца AgCl 10⁻² мас.% DyCl₃

преобразование дефектов должно приводить к изменению распределения электронных и дырочных ловушек по энергиям и сечениям захвата. В то же время, проявление отдельных компонент в спадах СВЧ фотопроводимости явно свидетельствует о том, что распределение дефектов имеет дискретный характер. Для одного из типов дефектов преобразование «старых» электронных ловушек, содержавшихся в исходном хлориде серебра, в «новые» можно записать:

$$tr + \text{DyCl}_3 \rightarrow tr_1$$
 (4)

(здесь *tr*₁ — новая ловушка). Уменьшение времени жизни свободного электрона (рис. 1 и рис. 3) при легировании свидетельствует об увеличении скорости захвата электрона в результате преобразования ловушек. По влиянию легирования на время жизни свободного электрона можно определить константу скорости захвата электрона на центры, образующиеся при легировании в хлориде серебра:

$$k_{_{3axB.}} = \frac{\Delta(1/\tau)}{\Delta(A)} \approx (3-5) \cdot 10^{-8} \text{ cm}^3 \cdot \text{c}^{-1}$$
 (5)

(использованы данные для чистого AgCl и AgCl, легированного DyCl, в концентрации 5·10⁻⁷ мас.%).

Для того, чтобы выяснить природу центров захвата электронов, образующихся при легировании, заметим следующее. Трудно себе представить высокую вероятность формирования ассоциатов при низких уровнях легирования. В то же время уже при концентрациях меньше 10⁻⁶ мас.% наблюдается влияние легирования на время жизни свободного электрона. Поэтому естественно предположить, что при низких уровнях легирования захват осуществляется на ионы диспрозия в узлах решетки, не связанные в ассоциаты. Этому предположению соответствует величина полученной константы скорости, которая оказалась близкой к константе скорости реакции захвата электрона на трехзарядном ионе Ir³⁺ в монокристаллическом AgBr, оцененной в [24].

Авторы выражают благодарность М.В. Гапановичу за помощь в обсуждении результатов.

СПИСОК ЛИТЕРАТУРЫ

1. Вострикова Ю.В., Клюев В.Г. // ФТП. 2008. Т. 42. Вып. 3. С. 277—281.

2. Личкова Н.В., Загороднев В.Н., Бутвина Л.Н. и др. // Квант. Электроника. 2009. Т. 39. № 3. С. 283.

3. *Nagli L., Gayer O. and Katzir A. //* Opt. Lett. 2005. V. 30. P. 1831.

4. Shafir I., Nagli L. and Katzir A. // Appl.Phys. Lett. 2009. V. 94. № 23. P. 1907.

5. *Seki Y., Furukawa Y.* // Jap. J. Appl. Phys. 1971. V. 10. P. 529—530.

6. Каминский А.А., Курбанов К., Уварова Т.В. // Изв. АН СССР. Неорганические материалы. 1987. Т. 23. С. 1049.

7. Каминский А.А., Аминов Л.К., Ермолаев В.Л. и др. Физика и спектроскопия лазерных кристаллов. М.: Наука, 1986. 121 с.

8. Грибковский В.П. Полупроводниковые лазеры. Учеб. пособие по спец. «Радиофизика и электроника». Мн.: Университетское. 1988. 304 с.

9. Личкова Н.В., Загороднев В.Н. // Высокочистые вещества. 1991. № 3. С.19—38.

10. Метелева Ю.В., Новиков Г.Ф. // ФТП. 2006. Т. 40. Вып. 10. С. 1167.

11. Новиков Г.Ф., Маринин А.А., Рабенок Е.В. // ПТЭ. 2010. № 2. С. 83.

12. Латышев А.Н., Овчинников О.В., Смирнов М.С. // ЖНиПФ. 2003. Т. 48. № 5. С. 47.

13. Рабенок Е.В., Гапанович М.В., Новиков Г.Ф., Один И.Н. // ФТП. 2009. Т. 43. № 7. С. 878.

14. Deri R.J., Spoonhower J.P. // Phys. Rev. B. 1982. V. 25. № 4. P. 2821—2827.

15. Грабчак С.Ю., Новиков Г.Ф., Моисеева Л.С., Любовский М.Р., Алфимов М.В. // ЖНиПФиК. 1990. Т. 35. № 2. С. 134.

16. *Матвеев А.Н*. Оптика. М.: Высшая школа, 1985. 351 с.

17. *Мейкляр П.В.* Физические процессы при образовании скрытого изображения. М.: Наука, 1972. 399 с.

18. *Чибисов К.В.* Природа фотографической чувствительности. М.: Наука, 1980. 404 с.

19. Белоус В.М., Чибисов К.В. // ДАН СССР. 1969. Т. 187. № 3. С. 593—596.

20. Феофилов П.П. // Изв. АН СССР, сер. физич. 1962. Т. 26. С. 435.

ВЛИЯНИЕ ЛЕГИРОВАНИЯ ДИСПРОЗИЕМ НА ЛЮМИНЕСЦЕНТНЫЕ И ФОТОЭЛЕКТРИЧЕСКИЕ...

21. Шапиро Б.И. Теоретические начала фотографического процесса. М.: Эдиториал УРСС. 2000. 288 с.

22. Рабенок Е.В., Голованов Б.И., Новиков Г.Ф. // Журн. Научн.и прикл. Фотогр. 2003. Т. 48. № 4. С. 22— 26.

Бочаров Константин Викторович — с.н.с., Институт проблем химической физики РАН (ИПХФ РАН); тел.: (496) 5221842, e-mail: kostya55b@rambler.ru

Рабенок Евгения Витальевна — с.н.с., Институт проблем химической физики РАН (ИПХФ РАН); тел.: (496) 5221842, e-mail: rabenok@icp.ac.ru

Новиков Геннадий Федорович — зав. лаб., Институт проблем химической физики РАН (ИПХФ РАН); тел.: (496) 5221842; e-mail: ngf@icp.ac.ru

Овчинников Олег Владимирович — зав. каф., Воронежский государственный университет; тел.: (4732) 208780; e-mail: ovchinnikov_o_v@rambler.ru

Личкова Нинель Васильевна — зав. лаб., Институт проблем технологии микроэлектроники и особо чистых материалов РАН; тел.: (496) 5244185; e-mail: lichkova@ iptm-hpm.ac.ru

Тихонина Наталья Александровна — инженерисследователь, Институт проблем химической физики РАН (ИПХФ РАН); тел.: (496) 5221842; e-mail: ngf@icp. ac.ru

Латышев Анатолий Николаевич — проф., Воронежский государственный университет; тел.: (4732) 208780; e-mail: anlat@rambler.ru 23. Латышев А.Н., Овчинников О.В., Смирнов М.С. // Жур. прикл. спектроскопии. 2004. Т. 71. № 2. С. 223—226.

24. *Deri R.J., Spoonhower J.P.* // Appl. Phys. Lett. 1983. V. 43. № 1. P. 65–67.

Bocharov Konstantin — Institute of problems of chemical physics of Russian academy of science; tel.: (496) 5221842, e-mail: kostya55b@rambler.ru

Rabenok Evgeniya — Institute of problems of chemical physics of Russian academy of science; tel.: (496) 5221842, e-mail: rabenok@icp.ac.ru

Novikov Gennady — Institute of problems of chemical physics of Russian academy of science; tel.: (496) 5221842; e-mail: ngf@icp.ac.ru

Ovchinnikov Oleg — Voronezh State University, head of department; e-mail: ovchinnikov_o_v@rambler.ru, tel.: (4732) 208780

Lichkova Ninel—Institute of microelectronics technology and high purity materials of Russian academy of science; tel.: (496) 5244185; e-mail: lichkova@iptm-hpm.ac.ru

Tikhonina Nataliya — Institute of problems of chemical physics of Russian academy of science; e-mail: ngf@icp. ac.ru

Latyshev Anatoly — Voronezh State University, professor; tel.: (4732) 208780; e-mail: anlat@rambler.ru