УДК 544.778.4-022.532.057

# СИНТЕЗ НАНОПОРОШКОВ La<sub>1-x</sub>Sr(Ca)<sub>x</sub>FeO<sub>3</sub> (x = 0; 0.1; 0.2; 0.3) ЗОЛЬ-ГЕЛЬ МЕТОДОМ

© 2010 Нгуен Ань Тьен<sup>1</sup>, В. О. Миттова<sup>2</sup>, И. Я. Миттова<sup>3</sup>, Динь Ван Так<sup>3</sup>

<sup>1</sup> Хошиминский государственный педагогический университет, Хошимин, Вьетнам <sup>2</sup> Воронежская государственная медицинская академия им. Н. Н. Бурденко, Воронеж, Россия <sup>3</sup> Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия

Аннотация. Методом соосаждения катионов La<sup>3+</sup>, Sr<sup>2+</sup>(Ca<sup>2+</sup>) и Fe<sup>3+</sup> водным раствором аммиака и карбоната натрия осуществлен синтез нанопорошков ферритов La<sub>1-x</sub>Sr(Ca)<sub>x</sub>FeO<sub>3</sub> (x = 0.1; 0.2; 0.3). Полученные образцы исследованы методами рентгенофазового анализа, просвечивающей электронной микроскопии и локального рентгеноспектрального микроанализа. Размер частиц полученных порошков после отжига при 950° С в течение 1ч не превышает 70 нм.

Ключевые слова: золь-гель метод, нанопорошки, ферриты,  $La_{1-y}$ Sr(Ca), FeO<sub>3</sub> (x = 0.1; 0.2; 0.3).

## введение

В последнее время одним из ведущих направлений в современном материаловедении стал синтез нанокристаллов с заданными свойствами и создание функциональных материалов на их основе. Замещая в LaFeO $_{\!\!\!3}$ ионы La $^{\!\!3^+}$  на Sr $^{\!\!2^+}$  и Ca $^{\!\!2^+}$  можно менять магнитные и другие свойства LaFeO<sub>2</sub> и получать материалы с заданными параметрами[1]. Твердые растворы на основе ортоферрита лантана La, "Sr(Ca) FeO, привлекают большое внимание благодаря своим уникальным свойствам. Материалы на основе  $La_{1-r}Sr(Ca)_rFeO_3$  при высоких температурах обладают кислородной проницаемостью и высокой электрической проводимостью [2, 3]. Они также могут использоваться в качестве катализаторов для процессов газоочистки [4]. Твердые растворы La, "Sr(Ca) "FeO<sub>2</sub> благодаря своим магнитным свойствам широко используются в различных областях: для хранения информации, в вычислительной, высокочастотной и импульсной технике, наноэлектронике, постоянных магнитах и. т. д [5].

Наиболее распространенным способом синтеза ортоферритов является твердофазный. Однако для реализации этого метода требуются высокие температуры синтеза, при этом получаются частицы с большими размерами и ограниченной степенью однородности [6].

В последние годы золь-гель метод синтеза нанокристаллов привлек к себе внимание благодаря низкой температуре синтеза и высокой однородности частиц по размерам. Этот метод довольно прост и не требует никакой сложной дорогостоящей аппаратуры. Согласно литературным данным, золь-гель метод не использовался для получения нанокристаллов этого соединения [7—8].

Цель настоящей работы — синтез и исследование фазового состава, размера и морфологии нанокристаллов  $La_{1-x}Sr(Ca)_xFeO_3$  (x = 0, 0.1; 0.2; 0.3), полученных золь-гель методом.

### МЕТОДИКА ЭКСПЕРИМЕНТА

Порошки получали методом совместного осаждения катионов La<sup>3+</sup>, Sr<sup>2+</sup> (Ca<sup>2+</sup>) и Fe<sup>3+</sup> водным раствором аммиака и карбоната натрия в кипящей воде, описанным в работе [9]. В качестве исходных веществ использовали разбавленные водные растворы хлоридов лантана и кальция, нитратов стронция и железа (III) (все «х.ч»). Растворы с массовым со отношением La : Sr (Ca) : Fe = (1-x) : x : 1; x = 0.1; 0.2; 0.3 смешивали непосредственно перед осаждением. В качестве осадителей применяли водные растворы аммиака и карбоната натрия (все «ч.д.а»).

Конечный продукт (порошок) получали путем термообработки обезвоженного осадка на воздухе от комнатной температуры до 950° С в течение 1 ч.

Фазовый состав порошков определяли методом рентгенофазового анализа (РФА, дифрактометр ДРОН-4, Со $K_a$ -излучение) с точностью 1% от межплоскостных расстояний.

Элементный состав контролировали методом локального рентгеноспектрального микроанализа (ЛРСМА — INCA Energy — 250).

Размер и морфология частиц исследованы по данным высоковольтной просвечивающей элек-



**Рис.** 1. Рентгенограммы образцов La<sub>1-x</sub>Sr<sub>x</sub>FeO<sub>3</sub>, полученных золь-гель методом, после отжига при 950° С в течение 1 ч: LaFeO<sub>3</sub> (*a*); La<sub>0.9</sub>Sr<sub>0.1</sub>FeO<sub>3</sub> (*б*); La<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3</sub> (*b*); La<sub>0.7</sub>Sr<sub>0.3</sub>FeO<sub>3</sub> (*c*)

тронной микроскопии на электронном микроскопе ЭМВ-100 БР. Для этого исследуемый материал подвергали УЗ-диспергированию в воде, а диспергированный порошок наносили на углеродную подложку.

# РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По данным РФА (рис. 1 и 2), образцы ферритов предполагаемых составов  $La_{1-x}Sr(Ca)_xFeO_3$  (x = 0.1; 0.2; 0.3), отожженных при 950° С в течение 1 ч, являются однофазными продуктами и имеют орторомбическую структуру, межплоскостные расстояния которых отличаются лишь незначительно от эталонных значений дифрактограммы для ортоферрита лантана — LaFeO<sub>3</sub>. Кроме того, в соответствии с данными дифрактограмм, фазы  $La_2O_3$ ,  $Fe_2O_3$ ,  $Sr(Ca)O_3$ , Sr(Ca)O, LaOCl,  $La_2(CO_3)_3$  в образцах отсутствуют, хотя исследуемые образцы ортоферрита лантана легировались стронцием (кальцием). Результаты локального рентгеноспек-



Рис. 2. Рентгенограммы образцов  $La_{1-x}Ca_{x}FeO_{3}$ , полученных золь-гель методом, после отжига при 950° С в течение 1 ч: LaFeO<sub>3</sub>(*a*); La<sub>0.9</sub>Ca<sub>0.1</sub>FeO<sub>3</sub>(*b*); La<sub>0.8</sub>Ca<sub>0.2</sub>FeO<sub>3</sub>(*b*); La<sub>0.7</sub>Ca<sub>0.3</sub>FeO<sub>3</sub>(*c*)

трального микроанализа, представленные в табл. 1 и 2, подтверждают присутствие стронция и кальция в этих образах.

Основные пики (101), (111), (121), (210), (112), (220), (131), (202), (230), (141), (240) и (242) соответствуют значениям межплоскостных расстояний 3.917, 3.506, 2.771, 2.601, 2.368, 2.265, 2.176, 1.965, 1.906, 1.755, 1.604 и 1.389 для орторомбической структуры LaFeO<sub>3</sub> (номер карты 37-1493).

Из табл. 1 и 2 следует, что реальные значения *х* для каждого элемента практически соответствуют его составу в стехиометрической формуле. Некоторое отклонение состава от стехиометрии объясняется тем, что загрязнения по углероду и хлору могут быть завышены в методе ЛРСМА от адсорбированных газообразных примесей из воздуха.

С помощью просвечивающей электронной микроскопии обнаружено (рис. 3), что, независимо от значений x, размер частиц La<sub>1-x</sub>Sr<sub>x</sub>FeO<sub>3</sub> после отжига при 950° С в течение 1ч не превышает 70 нм.

# НГУЕН АНЬ ТЬЕН, В. О. МИТТОВА, И. Я. МИТТОВА, ДИНЬ ВАН ТАК

| Предполагае-<br>мый состав<br>образцов               | Элементный состав (%) (весовой %) |                |       |                  |       |                |       |                  |                 |                                                                         |
|------------------------------------------------------|-----------------------------------|----------------|-------|------------------|-------|----------------|-------|------------------|-----------------|-------------------------------------------------------------------------|
|                                                      | La                                |                | Sr    |                  | Fe    |                | О     |                  | Про-            | Реальный состав образцов                                                |
|                                                      | расч                              | эксп           | расч  | эксп             | расч  | эксп           | расч  | эксп             | (Cl, C)         |                                                                         |
| La <sub>0.9</sub> Sr <sub>0.1</sub> FeO <sub>3</sub> | 52.61                             | 52.09<br>±0.55 | 3.68  | $3.31 \pm 0.50$  | 23.50 | 22.86<br>±0.83 | 20.21 | 21.18<br>±1.05   | 0.96<br>±0.05   | $La_{0.88}Sr_{0.09}Fe_{0.98}O_{3}$                                      |
| La <sub>0.8</sub> Sr <sub>0.2</sub> FeO <sub>3</sub> | 47.79                             | 46.89<br>±0.93 | 7.53  | 7.11<br>±0.53    | 24.02 | 23.81<br>±0.43 | 20.66 | 21.06<br>±0.63   | $1.13 \pm 0.08$ | $La_{0.79}Sr_{0.19}Fe_{0.98}O_3$                                        |
| La <sub>0.7</sub> Sr <sub>0.3</sub> FeO <sub>3</sub> | 42.76                             | 42.68<br>±0.37 | 11.56 | $10.92 \pm 0.71$ | 24.56 | 23.65<br>±0.95 | 21.12 | $21.60 \pm 0.53$ | $1.15 \pm 0.06$ | La <sub>0.68</sub> Sr <sub>0.28</sub> Fe <sub>0.95</sub> O <sub>3</sub> |

**Таблица 1.** Результаты ЛРСМА образцов La<sub>1-x</sub>Sr<sub>x</sub>FeO<sub>3</sub>, полученных золь-гель методом, после отжига при 950° С в течение 1 ч.

**Таблица 2.** Результаты ЛРСМА образцов La<sub>1-x</sub> Ca<sub>x</sub> FeO<sub>3</sub>, полученных золь-гель методом, после отжига при 950° С в течение 1 ч.

| Предполагае-<br>мый состав<br>образцов               | Элементный состав (%) (весовой %) |                  |      |                 |       |                  |       |                  |                 |                                                                         |
|------------------------------------------------------|-----------------------------------|------------------|------|-----------------|-------|------------------|-------|------------------|-----------------|-------------------------------------------------------------------------|
|                                                      | La                                |                  | Са   |                 | Fe    |                  | О     |                  | Про-            | Реальный состав<br>образцов                                             |
|                                                      | расч                              | эксп             | расч | эксп            | расч  | эксп             | расч  | эксп             | (Cl, C)         |                                                                         |
| La <sub>0.9</sub> Ca <sub>0.1</sub> FeO <sub>3</sub> | 53.68                             | 53.49<br>±0.46   | 1.72 | $1.57 \pm 0.23$ | 23.98 | 23.38<br>±0.75   | 20.61 | 21.08<br>±0.64   | $0.48 \pm 0.02$ | $La_{0.89}Ca_{0.09}Fe_{0.99}O_3$                                        |
| La <sub>0.8</sub> Ca <sub>0.2</sub> FeO <sub>3</sub> | 49.83                             | 48.36<br>±1.52   | 3.59 | $3.25 \pm 0.45$ | 25.04 | $24.77 \pm 0.50$ | 21.54 | 22.56<br>±1.35   | $1.06 \pm 0.06$ | La <sub>0.79</sub> Ca <sub>0.18</sub> Fe <sub>0.97</sub> O <sub>3</sub> |
| La <sub>0.7</sub> Ca <sub>0.3</sub> FeO <sub>3</sub> | 45.63                             | $45.60 \pm 0.34$ | 5.64 | 5.14<br>±0.65   | 26.21 | 25.40<br>±0.95   | 22.52 | $23.03 \pm 0.67$ | 0.93<br>±0.04   | La <sub>0.70</sub> Ca <sub>0.29</sub> Fe <sub>0.96</sub> O <sub>3</sub> |



**Рис. 3.** Микрофотографии (ЭМВ-100 БР) порошков  $La_{1-x}Sr_xFeO_3$ , полученных золь-гель методом, после отжига при 950° С в течение 1 ч:  $La_{0.9}Sr_{0.1}FeO_3$  (*a*);  $La_{0.8}Sr_{0.2}FeO_3$  (*б*);  $La_{0.7}Sr_{0.3}FeO_3$  (*в*)



**Рис. 4.** Микрофотографии (ЭМВ-100 БР) порошков La<sub>1-x</sub>Ca<sub>x</sub>FeO<sub>3</sub>, полученных золь-гель методом, после отжига при 950° С в течение 1 ч: La<sub>0.9</sub>Ca<sub>0.1</sub>FeO<sub>3</sub> (*a*); La<sub>0.8</sub>Ca<sub>0.2</sub>FeO<sub>3</sub> (*b*); La<sub>0.7</sub>Ca<sub>0.3</sub>FeO<sub>3</sub> (*b*)

Наночастицы кристаллов La<sub>0.9</sub>Sr<sub>0.1</sub>FeO<sub>3</sub> попадают в диапазон размеров 20-60 нм, с увеличением значений размеров частиц распределение частиц по размерам медленно уменьшается, при этом частицы имеют разные формы: приблизительно сферическую, сферическую со слабо выраженной огранкой, вытянутую. Большая однородность частиц кристаллов (около 60%) при размере от 40 до 50 нм наблюдается для феррита La<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3</sub>; для меньших и больших значений размеров наблюдается относительно равномерное распределение частиц по размерам, в этом случае частицы также имеют сферическую форму со слабо выраженной огранкой. Более 30 % числа частиц порошков La<sub>0.7</sub>Sr<sub>0.3</sub>FeO<sub>3</sub> имеют размер 40—50 нм; для меньших и крупных кристаллов гистограмма распределения частиц спадает, порошки La<sub>0.7</sub>Sr<sub>0.3</sub>FeO<sub>3</sub> содержат частицы сферической и вытянутой формы. Независимо от значений х, некоторые частицы образуют сростки по граням.

С ростом содержания стронция размер полученных нанопорошков увеличивается. Это может объясняться тем, что радиус иона стронция больше, чем радиус лантана ( $r(Sr^{2+}) = 0.120$  нм;  $r(La^{3+}) = 0.104$  нм) [10].

Методом просвечивающей электронной микроскопии «ЭМВ-100БР» показано, что, независимо от значений х, после отжига при 950° С в течение 1 ч. получаются отдельные нанопорошки и агломераты  $La_{1-x}Ca_xFeO_3$ , сильно отличающиеся по размерам (рис. 4); можно говорить о двух-трех видах агломератов: мелких, приблизительно сферической формы — порядка 20—30 нм, средних, размером 40—60 нм, и крупных, приблизительно сферической формы со слабо выраженной огранкой, и вытянутой формы — от 60 до 70 нм.

Во всех случаях около 40 % частиц имеют размер от 40 до 50 нм, для больших и меньших значений размеров частиц распределение частиц по размерам спадает, причем при x = 0.1 это уменьшение происходит резко.

Отметим, что, независимо от значений х и типа легирующей добавки (стронций или кальций), наночастицы кристаллов  $La_{1-x}Sr(Ca)_xFeO_3$  соединены между собой с образованием агломератов, характерных для порошков, полученных золь-гель методом.

Таким образом, дегидратацией и декарбонизацией совместно осажденных гидроксидов лантана, железа (III) и карбонатов лантана, стронция (кальция) получены нанопорошки La(Y)<sub>1-x</sub>Sr(Ca)<sub>x</sub>FeO<sub>3</sub> (x = 0; 0.1; 0.2; 0.3). Полученные предложенным методом порошки ферритов La<sub>1-x</sub>Ca<sub>x</sub>FeO<sub>3</sub>, La<sub>1-x</sub>Sr<sub>x</sub>FeO<sub>3</sub> после отжига при 950° С в течение 1 ч. имеют размер частиц не выше 70 нм. Для La<sub>1-x</sub>Sr<sub>x</sub>FeO<sub>3</sub> наблюдается более равномерное распределение частиц по размеру, и размер их меньше, чем у La<sub>1-x</sub>Ca<sub>x</sub>FeO<sub>3</sub>. Независимо от значений х и типа легирующей добавки получаются отдельные наночастицы и агломераты La<sub>1-x</sub>Sr(Ca)<sub>x</sub>FeO<sub>3</sub>, сильно отличающиеся по своим формам от приблизительно сферической.

За помощь в проведении данного исследования авторы выражают благодарность кандидату физико-математических наук, старшему научному сотруднику НИЛЭММиЭ Воронежского государственного технического университета Солдатенко Сергею Анатольевичу, сотрудникам центра коллективного пользования Воронежского госуниверситета кандидату технических наук Агапову Борису Львовичу и ведущему инженеру Румянцевой Нине Анатольевне.

#### СПИСОК ЛИТЕРАТУРЫ

1. Белова К. П. Ферримагнетизм: [Сборник статей] / под ред. К. П. Белова и Ю. Д. Третьякова. М. : Изд-во МГУ, 1975. 206 с.

2. J. Mizuzaki, T. Sasamoto, W. R. Cannon, and H. K. Bowen // J. Am. Ceram. Soc. 1983. V. 66, №. 4. P. 247-252.

3. J. E. ten Elshof, H. J. M. Bouwmeester, and H. Verveij // Solid State Ionics. 1995. V. 81. P. 97—109.

4. Исупова Л. А., Яковлева И. С., Аликина Г. М., Рогов В. А., Садыков В. А. // Кинетика и катализ. 2005. Т. 46. С. 773—779.

*Нгуен Ань Тьен* — к.х.н., преподаватель кафедры физической химии химического факультета Хошиминского государственного педагогического университета, Хошимин, Вьетнам; e-mail: anhtien0601@rambler.ru

*Миттова Валентина Олеговна* — к.б.н., ассистент кафедры биохимии, Воронежская государственная медицинская академии им. Н. Н. Бурденко; e-mail: vmittova@ mail.ru

Динь Ван Так — аспирант кафедры материаловедения и индустрии наносистем химического факультета, Воронежский государственный университет; email: dinhvantac@yandex.ru

Миттова Ирина Яковлевна — д.х.н., профессор кафедры материаловедения и индустрии наносистем химического факультета Воронежского государственного университета; тел./факс (4732) 208-459, e-mail: inorg@chem.vsu.ru

5. Белов К.П. Редкоземельные ферромагнетики и антиферромагнетики / К.П. Белов, М.А. Белянчикова, Р.З. Левитин и др. М.: Наука, 1965. 318 с.

6. *Gilleo M. A.* Ferromagnetic materials: A handbook of the properties of magnetically ordered substances; wohlfarth, E. P., Ed.; North-Holland, Amsterdam, 1980; V. 2, Chapter 1.

7. Kakihana M. J. Sol-Gel Sci. Technol. 1996.

8. Методы получения наноразмерных материалов: Курс лекций. Екатеринбург: Изд-во УрГУ, 2007. 77 с.

9. *Нгуен Ань Тьен*. Синтез, структура и свойства нанопорошков La(Y)<sub>1-x</sub>Sr(Ca)<sub>x</sub>FeO<sub>3</sub> (x = 0.0; 0.1; 0.2; 0.3) // Дисс. на соискание ученой степени к.х.н. — Воронеж. госуниверситет.: 2009. 153 с.

10. Г. Реми. Курс неорганической химии. Т.2. Перевод с немецкого XI издания канд. хим. наук. А.И. Григорьева, А.Г. Рыкова, Н.С. Смирновой / Под ред. Чл.корр. АН СССР А.В. Новоселовой, изд-во «Мир». М.: 1966. 837 с.

*Nguyen Anh Tien* — PhD, Physical Chemistry Department, Ho Chi Minh City University of Pedagogy, Ho Chi Minh City, Vietnam

*Mittova V. O.* — Ph.D., Biochemistry Department, Voronezh Medical Academy, Voronezh; email: vmittova@ mail.ru

*Dinh Van Tac* — Ph.D. student of Department of Material Science and Industry of Nanosystems, Voronezh State University; email: dinhvantac@yandex.ru

*Mittova I. Ya.* — grand PhD, professor, doctor of chemical sciences, Department of Material Science and Industry of Nanosystems, Voronezh State University, Voronezh City, Russia; email: inorg@chem.vsu.ru