УДК 551.341

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ И ЭЛЕКТРИЧЕСКИЕ ПОТЕНЦИАЛЫ ЛЬДА С ВКЛЮЧЕНИЯМИ

© 2009 Г. С. Бордонский, А. С. Истомин, С. Д. Крылов

Институт природных ресурсов, экологии и криологии СО РАН, ул. Бутина 26, а/я 147, 672090 Чита, Россия Поступила в редакцию: 26.06.2009 г.

Аннотация. В работе выполнены одновременные измерения диэлектрической проницаемости льда с примесями на частоте 1000 Гц с использованием емкостной ячейки и ЭДС на электродах, внедренных в образцы. Установлена связь ЭДС с аномально высокими значениями емкости ячейки. Аномалии определяются как существованием сквозной проводимости, так и наличием двойных электрических слоев на границе измерительный электрод-среда.

Ключевые слова: диэлектрическая проницаемость, жидкие пленки, сквозная проводимость.

введение

При измерениях электрических параметров льда, мерзлых дисперсных сред, твердых электролитов и других сред часто обнаруживаются их аномалии, которые заключаются в гигантских значениях диэлектрической проницаемости и иных особенностях электрических параметров [1—4].

Эти аномалии в некоторых случаях объясняют электродными эффектами. Однако часто физический смысл этих эффектов остается полностью не выясненным. Например, в [5] говорится о том, что химическая природа электродов не влияет на величину гигантской диэлектрической проницаемости и, поэтому, ставится вопрос о природе электродного эффекта.

В работе [1] для исключения электродных эффектов предлагается накладывать на них тонкую прокладку из диэлектрика, однако это, в принципе, не приводит к исчезновению двойного слоя, т.к. он вновь возникает на границах такой пленки с электродом и средой. Уменьшение измеряемой емкости, в этом случае, связано с дополнительным конденсатором, с более толстым диэлектриком, включенным последовательно с данной ячейкой.

В работах [6, 7] дается объяснение гигантского значения диэлектрической проницаемости на низких частотах с точки зрения эквивалентной схемы, представленной на рис. 1, для измерительных ячеек.

Существование приэлектродного двойного электрического слоя толщиной в десятые доли нанометра приводит к высокому значению емкости цепи, если имеются невысокие значения R_{co} . Если $R_{\rm cp}$ → 0, то емкость цепи равна $C_1/2$. Это приводит к высоким значениям действительной части относительной диэлектрической проницаемости среды (ε) в ячейке, если использовать не адекватную системе эквивалентную схему (рис. 1*a*), а результаты прямых измерений по схеме рис. 1*б*.

В практике экспериментов с замерзшими дисперсными средами и со льдом далеко не всегда ясно, при каких температурах можно использовать эквивалентную схему, где $R_{\rm cp} \rightarrow \infty$, т.е. наблюдается слабое влияние двойного электрического слоя

Рис. 1. *а*, *б* — эквивалентная схема типичных ячеек для измерения параметров сред на низких частотах; $C_{_{\rm H3}}$, $R_{_{\rm H3}}$ — измеряемые LCR-метром значения емкости и сопротивления цепи в параллельной схеме; C_1 , R_1 — емкость и сопротивление двойного слоя на границе электрод-среда; $C_{_{\rm CP}}$, $R_{_{\rm CP}}$ — емкость и сопротивление среды в ячейке.

на результаты измерений диэлектрической проницаемости.

Цель данной работы прояснить этот вопрос.

МЕТОДИКА ИЗМЕРЕНИЙ

Наличие проводимости в среде (т.е. жидкого слоя, где ионы относительно подвижны) можно определить по возникновению ЭДС в системе с вмороженными в лед электродами. В такой системе между электродами из разных металлов возникает значительная ЭДС электрохимической природы. Как показали наши эксперименты, ЭДС существует и при достаточно низких температурах, достигающих –70° С. Это значение согласуется с существованием до данной температуры квазижидкого слоя, по измерениям с использованием лазерных методов исследования поверхностей [8].

Поэтому, наряду с измерениями действительной и мнимой (ε'') частей относительной диэлектрической проницаемости (или эквивалентных *R* и *C* ячейки), одновременно измеряли ЭДС между одной из обкладок измерительной ячейки и точечным электродом, помещенным в центре боковой грани образца. Схема измерений приведена на рис. 2.

Измерения выполнены на частоте 1 кГц на измерительной ячейке в виде плоского конденсатора (3). Размер пластин конденсатора составлял 40×40 мм² с расстоянием между обкладками 10 мм. Пластины конденсатора изготовлены из латуни, боковые грани из фторопласта. Исследуемые образцы имеют размеры $25 \times 25 \times 10$ мм³.

Для охлаждения образца в измерительной ячейке (3) его помещали в термокамеру (2), в которую от системы охлаждения (1) равномерно поступали холодные пары азота. Система охлаждения состоит из сосуда Дьюара с жидким азотом и резистораиспарителя, на который подается напряжение от стабилизированного источника постоянного тока.

Рис. 2. Схема экспериментальной установки. 1 — система охлаждения образца; 2 — термокамера; 3 — измерительная ячейка; 4 — LCR-метр; 5 — термопарный измеритель температуры; 6 — милливольметр.

Скорость подачи паров азота регулировалась путем увеличения или уменьшения тока, подаваемого на резистор-испаритель. Изменение температуры образца регистрировалось двумя термопарами (5). Значения сопротивления *R* и емкости *C* измерительной ячейки регистрировались LCR-метром «Актаком AM-3001» (4). ЭДС между нижней пластиной измерительной ячейки и контактом регистрировалась милливольметром. Для установки электрода в центр боковой грани ячейки просверлено отверстие диаметром 1 мм, в которое вставлен медный электрод. Размеры контактной области электрода ~ 1 мм.

ЭКСПЕРИМЕНТ

Были измерены ε' и ЭДС образцов льда с примесью HF, NH₃ и NaCl. Кислоту и соли растворяли в воде для получения льда с разной концентрацией примесей. Как известно, легирование HF создает во льду избыток *L*-дефектов, а NH₃ — *D*-дефектов [9]. Измерения выполнены в цикле охлаждение-нагревание образцов.

На рис. За приведены зависимости ε' , полученные из эквивалентной схемы рис. 1 δ для образцов льда с примесью НF различной концентрации. На рис. Зб приведены зависимости ЭДС (U) от температуры. Характерная особенность графиков зависимостей $\varepsilon'(T)$ и U(T) — достижение минимальных значений ε' и, одновременно, U в интервале $-60 \div -80^{\circ}$ С. Те же зависимости приведены для льда с примесью в виде NH₃ на рис. 4a, δ . Результаты измерений для NaCl приведены на рис 5a, δ .

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные результаты указывают на существование жидких пленок в легированном льду с относительными концентрациями примеси по массе 10⁻⁵—10⁻⁴ до температур –80° С для исследуемых веществ HF, NH₂, NaCl. Они образуют на измерительных электродах двойной электрический слой с особыми свойствами, а также сквозную проводимость между электродами, что затрудняет определение диэлектрической проницаемости среды на низких частотах. Основную роль в кажущемся увеличении ε' , по видимому, играет проводимость среды, т.к. электродные емкости двойных слоев велики и не влияют на точность измерений на переменном токе для обычно используемых емкостных ячеек. Однако нелинейность свойств двойных слоев может также влиять на изменение импеданса электрической схемы.

Рис. 3. Зависимость ε' от температуры для образца льда с примесью HF с относительной концентрацией по массе 3,5×10⁻⁴ (*a*); зависимость ЭДС от температуры для того же образца (δ). Стрелками указаны направления изменения температуры (то же для рис. 4, 5).

Рис. 4. Зависимость ε' от температуры для образца льда с примесью NH₃ с концентрацией 1,5×10⁻⁴ (*a*); зависимость ЭДС от температуры для того же образца (δ).

Рис. 5. Зависимость ε' от температуры для образца льда с примесью NaCl с концентрацией 2,7×10⁻⁴ (*a*); зависимость ЭДС от температуры для того же образца (δ).

Остаточные значения проводимости не связанных между собой кластеров из пленок жидкости создают некоторое повышение ε' . Можно предположить, что по изменению ε' от *T* в области температур ниже $-40 \div -80^{\circ}$ С на различных частотах можно оценить параметры вымерзающих кластеров.

Возникновение ЭДС на металлических электродах, внедренных в лед или мерзлую среду, требует осторожности при измерениях электропроводности сред, особенно на постоянном токе. В случае одинаковых электродов и относительной однородности среды ЭДС достигает значений порядка 10 мВ, а для электродов из разных проводящих материалов — до 1 В и выше. ЭДС электрохимической природы может сочетаться с «псевдопьезоэффектом» [10], возникающем при неоднородных механических напряжениях в среде. Напряжение возникает из-за градиентов температуры и при внешних механических воздействиях.

При циклическом изменении температуры (в цикле нагревание-охлаждение в интервале температур – 100 ÷ 0° С) обнаруживается гистерезис ЭДС. Гистерезис указывается на существование «переохлажденных» жидких слоев при охлажде-

нии среды, а также «перегретость» слоев при их нагревании выше температур эвтектики. Аналогичные явления наблюдались при измерениях на СВЧ [11] и были подтверждены в работе [12] с использованием метода ядерного магнитного резонанса.

выводы

1. Легированный растворимыми в воде веществами лед при измерениях ε на низких частотах показывает «гигантские» значения ε' , что связано с особенностями эквивалентной схемы ячейки.

2. В отличие от работ [6, 7], где исследованы увлажненные дисперсные среды, во льду отсутствует эффект скачкообразного роста ε 'в точке перколяции, что связано с отсутствием мелкодисперсной структуры (для образцов небольших размеров, сравнимых с размером кристаллов льда).

3. Одновременное измерение ЭДС на электродах, внедренных в образец, и диэлектрической проницаемости позволяет определить порог исчезновения проводимости и получить дополнительные данные о состоянии пленочных растворов в среде. С использованием данной методики наблюдали гистерезис проводимости в цикле охлаждениенагревание, что связывается с гистерезисом температур фазового перехода пленочных растворов.

4. Предполагается, что данная методика может применяться для исследования дисперсных сред с нанопорами. Необходимо лишь обеспечить прямую электрическую связь среды с электродами.

Работа выполнена при поддержке междисциплинарного интеграционного проекта СО РАН №22.

СПИСОК ЛИТЕРАТУРЫ

1. *Фролов А.Д.* Электрические и упругие свойства мерзлых пород и льдов. Пущино, ОНТИ ПНЦ РАН. 1998. 515 с.

2. Турик А.В., Чернобабов А.И., Радченко Г.С., Турик С.А. // Физика твердого тела. 2004. Т. 46. Вып. 12. С. 2139 — 2142.

3. *Мамин Р.Ф., Игами Т., Мартон Ж и др. //* Письма в ЖЭТФ. Т. 86. Вып. 10. С. 731—735.

Бордонский Георгий Степанович — профессор, зав. лабораторией геофизики криогенеза Института природных ресурсов, экологии и криологии СО РАН; e-mail: lgc255@mail.ru, тел.: (3022) 354-063

Истомин Александр Сергеевич — инженер лаборатории геофизики криогенеза Института природных ресурсов, экологии и криологии СО РАН; e-mail: is_as_ reg@mail.ru; тел.: (3022) 441-032

Крылов Сергей Дмитриевич — старший научный сотрудник лаборатории геофизики криогенеза Института природных ресурсов, экологии и криологии СО РАН; e-mail: lgc255@mail.ru; тел.: (3022) 354-063 4. Олехнович Н.М., Силак А.Н., Пушкарев А.В. и др. // Физика твердого тела. 2009. Т. 51. Вып. 3. С. 547—553.

5. *Кинг Р., Смит Г.* Антенны в материальных средах. В 2-х томах. М.: Мир, 1984. 822 с.

6. Бордонский Г.С., Орлов А.О., Филиппова Т.Г. // Конденсированные среды и межфазные границы. 2006. Т. 8. С. 95—100.

7. Бордонский Г.С., Орлов А.О., Филиппова Т.Г. // Криосфера Земли. 2008. Т. XII. № 1. С. 66—71.

8. *Xing W., Miranda P.B., Shen Y.R.* // Phys. Rev. Lett. 2001. V. 86. № 8. P. 1554—1557.

9. Petrenko V., Whitworth R.W. Physics of Ice. Oxford Univ. Press, 2002. P. 347.

10. Евтушенко А.А., Петренко В.Ф. // ФТТ. Т. 33. № 5. С. 1509—1517.

11. Bordonsky G.S., Krylov S.D. // IEEE Trans. On Geosc. Rem. Sens.1998. № 2. P. 678—680.

12. *Cho H., Shepson P.B., Barrie L.A. [et all]* // J. Phys. Chem. B. 2002. V. 106. № 43. P. 11226—11232.

Bordonskiy George S. — the doctor of physical and mathematical sciences, professor, Institute of Natural Resources, Ecology and Cryology SB RUS; e-mail: lgc255@ mail.ru

Istomin Aleksander S. — the engineer, Institute of Natural Resources, Ecology and Cryology SB RUS; e-mail: is_as_reg@mail.ru; tel.: (3022) 441-032

Krylov Sergey D. — the candidate of physical and mathematical sciences, the senior scientific employee, Institute of Natural Resources, Ecology and Cryology SB RUS; e-mail: lgc255@mail.ru