УДК 539.21 : 538.975 : 539.319

ФОРМИРОВАНИЕ СЕТКИ ДИСЛОКАЦИЙ НЕСООТВЕТСТВИЯ ВБЛИЗИ ИНТЕРФЕЙСА ПЛЕНКА — ПОДЛОЖКА С УЧЕТОМ УПРУГОГО КОНТРАСТА

© 2008 г. В. М. Юрченко¹, Э. П. Фельдман^{1,2}, Л. Н. Гумен², А. А. Крохин^{2,3}, А. Е. Зюбанов⁴

¹Донецкий физико-технический институт НАН Украины, ул. Р. Люксембург 72, 83114 Донецк, Украина ² Universidad Popular Autonoma del Estado de Puebla, Puebla, 72160, Mexico

³ Department of Physics, University of North Texas, P.O. Box 311127, Denton, Texas, USA

⁴ Донецкий национальный университет, ул. Университетская 24, 83055 Донецк, Украина

Поступила в редакцию: 12.09.2008 г.

Аннотация. В работе теоретически исследована релаксация псевдоморфных напряжений за счет формирования дислокаций несоответствия в системе пленка — подложка с учетом упругого контраста. Сформулированы условия появления дислокаций несоответствия в пленке или подложке для винтовых дислокаций. Доказано, что дислокации несоответствия появляются пороговым образом в пленке или подложке в зависимости от знака контрастной разности при достижении эпислоем критической толщины. Получены компактные аналитические выражения упругих полей, индуцированных антифазными деформациями в гетероструктуре пленка — подложка.

Ключевые слова: Релаксация псевдоморфных напряжений, дислокации несоответствия, гетероструктура пленка — подложка.

введение

Развитие нанотехнологий позволяет получать гетероэпитаксиальные тонкопленочные системы с высокой степенью совершенства. Несоответствие параметров решеток эпислоя (эпитаксиального слоя) и подложки, составляющее, как правило, несколько процентов, приводит к накапливанию в системе упругой энергии, которая пропорциональна толщине пленке d. Сброс энергии может осуществляться, в частности, по механизму Франка — Ван дер Мерве [1] путем генерации дислокаций несоответствия (ДН), образующих в общем случае сетку — вуаль, наброшенную на интерфейс. Плотность дислокаций ρ (обратно пропорциональна расстоянию *h* между ядрами дислокаций) формируется так, чтобы по возможности полно компенсировать энергию псевдоморфных деформаций. Генерация ДН осуществляется, когда толщина пленки d превышает критическую толщину $d_{,}$ а при $d > d_{d}$, рост эпислоя осуществляется беспрепятственно. В более ранних работах рассматривали либо предельно толстые слои $(d \rightarrow \infty)$ [2,3], либо упрощенно оценивали влияние свободной поверхности эпислоя [4]. Кроме того, ранее нигде не учитывалось различие упругих модулей пленки и

подложки. Представляется, что, наряду со свободной поверхностью, существенное влияние на энергетику гетероструктуры оказывает вторая поверхность — интерфейс, если упругие модули слоя и подложки существенно отличаются. Местоположение зарождающихся вблизи от свободной поверхности дислокаций несоответствия [5] и подвергающихся действию сил "изображения" существенным образом определяются различием "жесткостей" контактирующих вдоль интерфейса слоя и подложки. Для упрощения выкладок и без ограничения общности физических результатов, ограничимся рассмотрением винтовых дислокаций.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлена схема расположения ДН вблизи интерфейса (xz — плоскость контакта). Пленка и подложка считаются упруго изотропными, модули сдвига соответственно равны μ_1 и μ_2 . Решетки пленки и подложки не соответствуют лишь по углу: параметр несоответствия θ — разность между углом, составляемым базисными векторами решетки в плоскости xz подложки, с нижней стороны интерфейса, и аналогичным углом

для пленки — с верхней стороны интерфейса. Вектор Бюргерса *b* одинаков для всех дислокаций. С учетом симметрии задачи деформация будет антиплоской, характеризующейся лишь одной компонентой вектора смещения $u_z = u(x, y)$ и двумя компонентами тензора деформаций ε_{xz} и ε_{yz} . В линейной теории упругости, компоненты тензора напряжений определяются в соответствии с законом Гука [6]. Контактная задача теории упругости решается методом Фурье-преобразования по координате *x* при граничных условиях типа «жесткой склейки»: на границе пленка — подложка непрерывны нормальные компоненты тензора напряжений и тангенциальные компоненты деформаций. При этом на свободной поверхности нормальные напряжения отсутствуют, а вдали от границы в подложке отсутствуют смещения, вызванные наличием интерфейса.

Вычисление деформаций, напряжений и полной энергии системы пленка — подложка производится в несколько этапов. На первом этапе отыскиваются упругие поля в этой системе (рис. 1), порождаемые одной (винтовой) дислокацией, параллельной интерфейсу и пересекающей плоскость xy в точке (0,*l*) (аналог задачи [7]). Упругие поля удобно представить в виде суммы двух слагаемых, сингулярного и регулярного: $u_{tot} = u_o + u^{(v)}$ (v = 1,2 — номер среды). Сингулярное слагаемое $u_o(x, y)$

Рис. 1. Схема расположения дислокаций несоответствия вблизи интерфейса: *а* — дислокации формируются в эпислое; *b* — дислокационный ряд находится в подложке; геометрическое изображение контура интегрирования в плоскости *x* — *y*.

— смещения, порождаемые единичной дислокацией в неограниченной однородной среде, хорошо известно (для определенности: дислокация находится в подложке) [5]:

$$u_o(x, y+l) =$$

$$= \frac{b}{4\pi i} \left[\ln \left(x + i(y+l) \right) - \ln \left(x - i(y+l) \right) \right]$$
⁽¹⁾

Регулярные части упругих полей, как в пленке, так и в подложке, находящиеся путем решения двумерной антиплоской контактной задачи теории упругости, позволяют вычислить "силу изображения" $F = -b\sigma_{zx}(0,l)$, действующую на дислокацию, и полную энергию гетеросистемы $E = \frac{1}{2} \int \sigma_{ik} \varepsilon_{ik} dV$. При этом полная энергия разбивается на сумму трех частей: энергия деформаций несоответствия E_m , энергия взаимодействия деформаций несоответствия E_i и энергия дислокациями несоответствия E_D . Первые два слагаемых хорошо известны [4, 8] и для случая, изображенного на рис. 1*a*, представляются в виде:

$$E_m = \frac{1}{2} \mu_1 d\theta^2; \quad E_i = -\mu_1 d \frac{b}{h} \theta$$
 (2)

Энергия нормируется на единицу площади интерфейса. Третье слагаемое в энергии Е, получается в результате вычисления интеграла $E = \frac{1}{2} \int \sigma_{ik} \varepsilon_{ik} dV$, в котором напряжения σ_{ik} и деформации ε_{ik} формируются периодическим рядом дислокаций несоответствия. С математической точки зрения, вычисление этого интеграла осуществляется путем перехода от интегрирования по объему к интегрированию по поверхности. Наличие сингулярностей в местах расположения дислокаций требует "выкалывания" особых точек ядер дислокаций. Учет граничных условий на бесконечности приводит к исчезновению интеграла на внешней поверхности, интегралы вблизи сингулярностей "обрезаются" путем введения радиуса *г* ядра дислокации. Оставшиеся интегралы по берегам разреза вычисляются с учетом того, что все разрезы физически эквивалентны. Часть энергии Е_D, обусловленная регулярной частью суммарных напряжений, вычисляется при помощи формулы суммирования Пуассона. Считая радиус ядра дислокаций величиной порядка вектора Бюргерса, $r_c \sim b$ (*b* выбирается в качестве масштаба длины так, что $d \Leftrightarrow d/b$, $l \Leftrightarrow l/b$) и вводя безразмерную линейную плотность дислокаций несоответствия $\rho \equiv b/h$, получаем в итоге вычислений полную энергию гетеросистемы в единицах $\mu_1 b/2$. В частности, для ДН, формирующихся в подложке, полная энергия системы представляется в виде:

$$\varepsilon(\rho,\lambda) = d(\rho-\theta)^{2} + \frac{1+p}{2\pi(1-p)}\rho \times$$

$$\times \left[\lambda - \ln(2\pi\rho) - \sum_{m=1}^{\infty} \exp(-2\lambda m) \frac{p \exp(4\pi d\rho m) + 1}{m(p + \exp(4\pi d\rho \cdot m))}\right]$$
(3)

Здесь: $\lambda = 2\pi l/h = 2\pi l\rho$ — местоположение дислокаций от интерфейса, отнормированное на *h*, $p = (\mu_2 - \mu_1)/(\mu_2 + \mu_1)$ — упругий контраст.

Основные выводы работы состоят в следующем. Если среды являются упруго идентичными (p=0), то ДН появляются скачком точно на интерфейсе, т.е. энергия $\varepsilon(\rho, l)$ имеет минимум при l=0, что подробно исследовалось в [2, 4, 9]. При этом, при толщинах пленки *d* меньше критической *d* = $-\ln(2\pi\theta)/(4\pi\theta)$ появление ДН энергетически невыгодно, т.е. $\varepsilon(\rho, l)$ имеет минимум при $\rho = 0$. Для типичных значений параметра несоответствия $\theta \approx 10^{-2} \div 10^{-3}$ критическая толщина изменяется от 10 до 10² параметров решетки. Для «толстых» пленок ($4\pi d >> h$) на рис. 2 представлена зависимость энергии $\varepsilon(\lambda)$, численно построенная по формуле (3): сплошная кривая отвечает ситуации, когда подложка мягче пленки, пунктирная — соответствует случаю более жесткой подложки. Правая сторона соответствует ситуации, когда ДН появляются в эпислое (положительное λ), левая

Рис. 2. График зависимости отнормированной энергии гетероструктуры в функции расстояния дислокационного ряда от интерфейса для положительного (пунктирная кривая) и отрицательного (сплошная линия) контраста *p*, нормированы на среднее значение $\rho = 1/2\theta$. Вставка демонстрирует увеличенное изображение минимума энергии, реализующегося в подложке для отрицательного контраста.

сторона (отрицательное λ) соответствует наличию ДН в подложке. В широкой области значений λ зависимость энергии от λ является линейной, вместе с тем, при приближении ряда ДН либо к свободной поверхности (жесткая подложка l = d), либо к интерфейсу (жесткая пленка l = 0) наблюдается логарифмическая расходимость (на вставке выделена область вблизи интерфейса). Это указывает на энергетическую невыгодность формирования сетки дислокаций на межфазных границах.

Если материал эпислоя мягче подложки (p>0), то дислокации несоответствия формируются пороговым образом вблизи свободной поверхности, преодолевают локальный барьер и движутся к интерфейсу. Они не преодолевают интерфейс и останавливаются в минимуме энергии $\varepsilon(\lambda)$ в эпислое [9, 10]. Дислокации, имеющиеся в подложке, достигают равновесия в том же минимуме энергии, преодолевая при движении барьер конечной высоты на интерфейсе. Для мягкой подложки (p < 0, рис. 2, сплошная кривая), возникающие в подложке ДН достигают равновесного значения на конечном расстоянии от интерфейса в подложке. ДН могут также генерироваться и в эпислое вблизи свободной поверхности (в случае положительного упругого контраста), движутся к интерфейсу, преодолевают локальный барьер и формируют сетку ДН в подложке. Достижение точки равновесия в подложке, требует преодоления потенциального барьера, следовательно, этот источник ДН становится эффективным при достаточно высоких температурах.

Характерные расстояния λ_{M} , на которых формируется ряд дислокаций, соответствующие условию $\partial \varepsilon(\lambda, \rho)/\partial \lambda = 0$, определяются выражением:

$$cth\lambda_m = 1 + \frac{1}{|p|} \tag{4}$$

Поскольку 0 < |p| < 1, то решение $\lambda_m = 2\pi l_m/h$, которое лежит в интервале $0 < \lambda_M < (ln3)/2 \approx 0.55$, дает равновесное значение положения дислокационного ряда или *у* — координату минимума энергии. Равновесная плотность дислокаций при этом:

$$\rho_m = \theta + \frac{1+p}{4\pi(1-p)d} \ln(2\pi\theta) \tag{5}$$

В пределе $d \to \infty$ (5) дает классический результат $\rho_m = \theta$. Равновесная плотность ρ_m уменьшается с ростом толщины пленки. Плотность дислокаций появляется при определенной критической толщине пленки $d_c \approx -(1+p)ln(2\pi\theta)/4\pi(1-p)\theta$. Факт исчезновения ДН при $d < d_c$ хорошо известен [1, 4], при

этом пленка растет псевдоморфно. Полученное в работе выражение имеет явную зависимость от упругого контраста и обнаруживает тенденцию уменьшения критической толщины в сравнении с классическим результатом при возрастании упругого контраста. На рис. 3 показана зависимость $\rho_m(d)$ и $l_m(d) = \lambda_m/2\pi\rho_m$ для $\theta = 0,01$ и среднего контраста p = -0, 4. Зависимость $\lambda_{-}(d)$ топологически подобна зависимости $\rho_m(d)$ (она показана во вставке). При $d < d_c = 16$ равновесные значения $\rho_m(d)$ и $\lambda_m(d)$ исчезают, т.е. эпислой свободен от ДН. При *d*=*d* обе функции обнаруживают зависимость от разности $(d-d_{a})$ в виде $(d-d_{a})^{1/2}$ с бесконечной правосторонней производной. Координата $l_m(d)$ зависит от соотношения $\lambda/2\pi\rho_m$ и стремится к конечному значению при $d \rightarrow d_c$. В пределе $d \rightarrow \infty$ численные расчеты $\rho_m(d)$ и $\lambda_m(d)$, изображенные на рис. 3 описываются асимптотическими формулами (4) и (5) соответственно. Полученные асимптотические оценки d_{λ} , $\rho_m(d)$ и $\lambda_m(d)$ справедливы лишь по порядку величины, точный результат, в частности для d_{c} , может быть получен только после численного анализа (3). Обычно плотность ДН оценивается как $\rho_{m}=\theta$. Однако, эта зависимость соответствует толстым пленкам, когда зависимость $\rho_m(d)$ выходит на насыщение. Для тонких пленок равновесная плотность ДН может быть занижена в несколько раз. Для пленок с толщинами близкими к критическим соответствующая плотность может отличаться на порядок по величине от оценки равной θ и должна

Рис. 3. Зависимость равновесной плотности дислокаций (сплошная линия, левая вертикальная ось) и местоположения дислокационного ряда от интерфейса (пунктирная кривая, правая вертикальная ось) в функции от толщины эпислоя, численно рассчитанная для толстых пленок. На вставке приведен график зависимости $\lambda_m = 2\pi \rho_m l_m$ в функции толщины пленки.

оцениваться численно, в соответствии с (3). Зависимость $\rho_m(d)$ типична для фазовых переходов второго рода. При этом плотность ДН может рассматриваться как параметр порядка: состояние без ДН ($d < d_c$) и с ДН ($d > d_c$) следует считать как две термодинамические равновесные фазы гетероструктуры. Фазовый переход имеет место при утонении пленки, а толщина пленки *d* играет при этом роль внешнего управляющего параметра.

Для мягких подложек пленка растет псевдоморфно, пока ее толщина меньше критической. На этой стадии упругая энергия пропорциональна толщине эпислоя и квадратична по параметру несоответствия. При достижении d псевдоморфный рост становится энергетически невыгодным, в подложке быстро нарастает плотность ДН (с бесконечной производной при $d=d_{d}$), стартуя с нуля, т.е. подобно фазовому переходу второго рода. Дислокации несоответствия формируют периодическую структуру на конечном расстоянии $l_{m}(d)$ от интерфейса. Это расстояние обратно пропорционально параметру несоответствия и обнаруживает сильную зависимость от упругого контраста, приближаясь к нулю при p=0. Для среднего контраста, $|p|{\approx}0.5$ и $0{\sim}10^{-2}$ расстояние $l_{\scriptscriptstyle m}$ составляет порядка 10 постоянных решетки. При росте пленки плотность $\rho_{m}(d)$ растет плавно и достигает значения $\rho_m(d \rightarrow \infty) = \theta/b$, одновременно при этом ряд приближается к интерфейсу. Для толстых пленок минимальное расстояние от интерфейса $l_m(d \rightarrow \infty)$ $=b\lambda_{m}/2\pi\theta$ приблизительно в два раза меньше, чем $l_{m}(d_{n})$. Это последняя стадия формирования периодической дислокационной структуры в подложке. Таким образом, эпислой остается свободным от ДН, однако имеются упругие деформации, которые сконцентрированы в слое ~ d вблизи интерфейса. Область вблизи свободной поверхности не деформирована и формально не имеется факторов препятствующих дальнейшему росту эпислоя. Качественное подтверждение предложенного сценария наблюдается при росте пленки SiGe на мягкой подложке Si — SiGe [11], когда ДН появляются в мягкой подложке, а эпислой остается свободным от дислокаций несоответствия.

СПИСОК ЛИТЕРАТУРЫ

1. *Frank F.S. and van der Merwe S.H.* // Proc. Roy. Soc. (London). 1949. A 198. 205.

2. Van der Merwe J.H. // J. Appl. Phys. 1963. V. 34. P. 117.

3. Пастур В.А., Фельдман Э.П. // ФТТ. 1972. Т. 14. С. 2689.

4. Jesser W.A., Kullmann-Wilsdorf D. // Phys. Stat. Sol. 1967. V. 19. P. 95.

5. Владимиров В.И., Гуткин М.Ю., Романов А.Е. // ФТТ. 1987. Т. 29. С. 1581.

6. *Ландау Л.Д., Лифшиц Е.М.* Теория упругости. М.: Наука, 1965.

7. Head A.K. // Phil. Mag. 1953. V. 44. P. 92.

8. Jain S.C. et al. // Phil. Mag. 1992. A 65. P. 1151.

9. Vigueras E., Feldman E., Yurchenko V., Gumen L., Krokhin A. // Phil. Mag. 2001. A 81. 667.

10. Gosling T.S., Sain S.C., Willis S.R., Atkinson A., Bullough R. // Phil. Mag. 1992. A 66. 119.

11. Yugova T.G., Vdovin V.I., Midlidskii M.G., Orlov L.K., Tolomasov V.A., Potapov A.V., Abrosimov N.V. // Thin Solid Films. 1998. V. 336. P. 112.

Юрченко Владимир Михайлович, зав. отд., д.ф.-м.н., профессор, отд. электронных свойств металлов, e-mail: yurch@yurch.fti.ac.donetsk.ua

Фельдман Эдуард Петрович, вед. научн. сотр., д.ф.м.н., профессор, тел: (0622) 55-77-26

Зюбанов Александр Евгеньевич, доцент, к.ф.-м.н., каф. теоретической физики, Донецкий национальный университет, тел: (062) 335-46-70

Yurchenko Vladimir M., doctor of physical and mathematical sciences, professor, head of department of electronic properties of metals, Donetsk Physics & Technics Institute of NAS of Ukraine, 83114, Donetsk, Ukraine; tel.: (0622) 55-22-33, e-mail: yurch@yurch.fti.ac.donetsk.ua

Feldman Eduard P., doctor of physical and mathematical sciences, professor, leading researcher, Donetsk Physics & Technics Institute of NAS of Ukraine; tel.: (0622) 557-726

Gumen L.N., Universidad Popular Autonoma del Estado de Puebla, Puebla

Krokhin A.A., Universidad Popular Autonoma del Estado de Puebla, Puebla

Zyubanov Alexander E., candidate of physical and mathematical sciences, associate professor of chair of Theoretic Physics of Donetsk National University; tel.: (062) 335-4670