УДК 54-165:54-171:546.86'19

ВЛИЯНИЕ ИМПУЛЬСНОГО МАГНИТНОГО ПОЛЯ НА СТРУКТУРУ СПЛАВОВ Sb_xAs_{1-x} И АНАЛИЗ ИХ ТЕРМОДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ

© 2008 г. Т. П. Сушкова, О. Н. Шумская, Г. В. Семенова, Б. Л. Агапов

Воронежский государственный университет, Университетская пл. 1, 394006 Воронеж, Россия Поступила в редакцию: 11.08.2008 г.

Аннотация. На основании анализа термодинамической устойчивости сплавов в двухкомпонентной системе Sb — As с использованием «физической концепции твердого раствора» определены границы области возможного распада. Методами рентгенофазового анализа, рентгеноспектрального микроанализа и сканирующей электронной микроскопии обнаружено, что воздействие слабого ИМП инициировало перераспределение компонентов, в процессе которого имеет место распад твердого раствора в системе Sb — As.

Ключевые слова: стабильность твердых растворов, термодинамические функции, импульсное магнитное поле, распад.

введение

В системе Sb — As образуется непрерывный ряд твердых растворов с минимальной точкой, однако, в литературе имеются данные о том, что в сплавах Sb_{1-x}As_x, отожженных при T = 473—673 K в течение 100 дней, наблюдается чрезвычайно медленное превращение, заключающееся в распаде высокотемпературного твердого раствора на два других, содержащих примерно 20—25 ат. % As и 70 ат. % As [1, 2]. Однако, в связи с тем, что другими авторами, исследовавшими данную систему, подобные результаты не были воспроизведены, сведения [1, 2] требуют уточнения.

Результаты расчета, проведенного в [3], также указывают на возможность распада. Рассчитанный купол распада ассиметричен и имеет скрытый максимум при ~ 0,65 ат. д. Аѕ и температуре ~ 923—973 К. Концентрационный интервал, в котором твердые растворы распадаются, увеличивается с понижением температуры, и при температуре менее 600 К твердофазная растворимость не превышает 1% с обеих сторон. Столь обширная область распада в данной системе маловероятна, что позволяет считать данные [3] требующими уточнения.

В связи с этим интересным представляется анализ стабильности твердых растворов Sb_xAs_{1-x}, поскольку характер взаимодействия в указанной системе может оказывать влияние на твердофазную растворимость в многокомпонентных полупроводниковых системах с участием мышьяка и сурьмы.

Ввиду низкой скорости процессов диффузии, достижение равновесного состояния в кристаллических телах затруднено. Слабые (<1 Тл) импульсные магнитные поля (ИМП) влияют на механические, оптические и другие свойства кристаллов, а также на характер протекания химических реакций в конденсированных средах. Считается, что воздействие ИМП на вещество связано со снятием запретов для интеркомбинационных переходов внутри комплексов структурных дефектов [4]. Не исключено, что путем воздействия импульсного магнитного поля на дефектную структуру кристалла можно создать более благоприятные условия для диффузии компонентов, что, в свою очередь, может способствовать увеличению растворимости или же создаст условия для реализации термодинамически обусловленного распада твердого раствора.

Указанные выше обстоятельства определили интерес к выяснению возможности возникновения структурных изменений в твердых растворах Sb_{1-x}As_x в результате воздействия ИМП.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

В настоящей работе проведен термодинамический анализ стабильности твердых растворов в системе Sb—As на основе «физической концепции твердого раствора», в соответствии с которой неупорядоченный твердый раствор, образованный изоморфными компонентами, рассматривается как аддитивная система, состоящая из следующих невзаимодействующих подсистем: а) атомных полиэдров среднего размера при T = 0 К, образующих решетку идеального по периодичности кристалла; б) статистических смещений центров «реальных» атомных полиэдров относительно центров атомных полиэдров среднего размера; в) фононов; г) термически возбужденных электронов [5,6]. Выражение для свободной энергии твердого раствора в этом случае имеет вид:

$$G(x,T) = H^{0}(x) + G_{def}(x,T) + G_{v}(x,T) + G_{el}(x,T) - TS_{konf}(x)$$
(1)

Каждый компонент свободной энергии уравнения (1) соответствует перечисленным выше независимым подсистемам. Все необходимые для расчета параметры представлены в табл. 1.

Результаты проведенного расчета свидетельствуют о наличии температурно — концентрационной области распада твердого раствора, которой соответствуют участки отрицательной кривизны на кривых $G_M - x$ (рис. 1). На основании полученных нами данных (рис. 2), значение критической температуры для системы Sb — As составляет 830 К (при содержании мышьяка 0.5 мол. д.), что близко к имеющимся в литературе экспериментальным данным [2].

Анализ значений термодинамических функций смешения в системе Sb — As (табл. 2), рассчитан-

Рис. 1. Концентрационная зависимость свободной энергии Гиббса смешения, рассчитанная на основе «физической концепции твердого раствора» в системе Sb—As при температуре *T*(K): *1* — 300, *2* — 350, *3* — 450, *4* — 500, *5* — 550, *6* — 600, *7* — 750, *8* — 800, *9* — 850, *10* — 900, *11* — 970.

Таблица 1. Тепловые и упругие характеристики Sb и As

Параметр	Sb	As
<i>Ө</i> _д , К [13]	210	285
<i>Е</i> , ГПа	56,9*	55,7
а, нм [13]	0,43012	0,37595
α _л , 10 ⁻⁶ K [14]	8,5	4,7
γ _r [14]	0,86	0,16**
C ₁₂ [12]	24,8	19,7
C ₄₄ [12]	28,5	22,6

 * — рассчитано методом Фогхта-Ройса-Хилла с использованием параметров с, из [13];

** — оценено по корреляционной зависимости «модуль Юнга — постоянная Грюнайзена».

ных на основе «физической концепции твердого раствора», указывает на то, что в этой системе имеет место положительное отклонение от идеальности преимущественно за счет деформационной энтальпии смешения (H^{E}_{def}), которая значительно превышает вибрационную составляющую (H^{E}_{ν}) избыточной энтальпии смешения. Избыточная энтропия мала, тем не менее энтропийный фактор (TS^{E}) дает положительный вклад в величину G^{E} и определяет температурную зависимость избыточ-

Рис. 2. Диаграмма состояния системы Sb-As с куполом распада: *1* — диаграмма по данным [10, 11], *2* — бинодаль, построенная на основании «физической концепции твердого раствора», *3* — температурно-концентрационная область возможного распада твердого раствора по данным [2].

ной энергии Гиббса: с ростом температуры *G^E* увеличивается. Упругие (деформационные) составляющие как энтропии, так и энтальпии крайне незначительно изменяются с температурой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования воздействия импульсного магнитного поля проводили на кристаллах твердого раствора Sb_{0,8}As_{0,2}, состав которого отвечает минимальной точке фазовой диаграммы системы сурьма — мышьяк.

Для синтеза в качестве исходных компонентов использовали сурьму Су-000, мышьяк ОСЧ-9-5,

предварительно очищенный от оксидов вакуумной сублимацией. Сплавление компонентов проводили однотемпературным методом в ампулах из особо чистого кварца. Для гомогенизации полученных твердых растворов проводили отжиг образцов при температуре 820 К в течение 100 ч.

Обработку образцов ИМП проводили при T = 300 К в низкоиндуктивном соленоиде, через который периодически разряжалась батарея конденсаторов. Воздействие осуществлялось серией из 3000 симметричных треугольных импульсов с амплитудой B = 0,3 Тл, длительностью $\tau = 3 \cdot 10^{-5}$ с и частотой следования f = 50 Гц. Обработанные

Таблица 2. Термодинамические функции (Дж/моль, S_i^E в Дж/(моль · К)) сплавов Sb_xAs_{1-x} при температурах 300 К и 750 К

<i>х</i> , мол.д. As	H^{E}_{ν}	$H^{\!\scriptscriptstyle E}_{_{def}}$	S^{E}_{v}	S^{E}_{def}	TS^{E}	$G^{\scriptscriptstyle E}$	$G^{\scriptscriptstyle M}$		
T = 300 K									
0,02	-3,55	241,7	-0,027	-0,009	-10,8	252,14	7,72		
0,10	-1,63	1096,2	-0,124	-0,043	-50,1	1144,50	334,07		
0,20	-2,89	1918,0	-0, 215	-0,085	-90,0	2005,14	757,64		
0,30	-3,78	2477,5	-0, 277	-0, 121	-119,19	2592,94	1070,05		
0,40	-4,34	2786,2	-0, 310	-0, 147	-137,12	2918,97	1241,15		
0,50	-4,51	2855,4	-0,316	-0, 162	-143,15	2994,35	1266,63		
0,60	-4,33	2696,5	-0,298	-0, 162	-138,07	2830,19	1152,37		
0,70	-3,79	2320,5	-0,256	-0, 147	-120,86	2437,62	914,73		
0,80	-2,88	1738,2	-0,191	-0, 115	-91,94	1827,71	580,21		
0,90	-1,62	961,6	-0,106	-0, 066	-51,54	1011,51	201,08		
0,98	-3,53	206,6	-0,023	-0, 015	-11,18	217,40	-27,07		
T = 750 K									
0,02	-2,31	241,9	-0,008	-0,0393	-2,95	269,06	-341,97		
0,10	-1,06	1096,7	-0,042	-0,1826	-136,95	525,82	-802,29		
0,20	-1,87	1918,8	-0, 083	-0, 3286	-246,46	2146,52	-972,23		
0,30	-2,46	2478,2	-0,119	-0, 4356	-326,67	2780,26	-1026,95		
0,40	-2,80	2786,4	-0, 147	-0, 5015	-376, 16	3134,59	-1059,96		
0,50	-2,91	2855,2	-0, 162	-0, 5252	-393,93	3220, 58	-1099,98		
0,60	-2,79	2696,0	-0, 163	-0, 5059	-379,42	3047,50	-1147,05		
0,70	-2,43	2319,9	-0, 149	-0, 4432	-332,41	2627,92	-1179,29		
0,80	-1,85	1738,0	-0,117	-0, 3375	-253,10	1972,55	-1146,20		
0,90	-1,04	961,1	-0,067	-0, 1894	-142,01	1092,75	-933,31		
0,98	-2,26	206,5	-0, 015	-0,0411	-308,26	2350,29	-375,99		

образцы между контрольными измерениями хранились при T = 300 К вместе с образцами, не подвергавшимися обработке ИМП.

Рентгенографические исследования сплавов проводили методом порошка на дифрактометре ДРОН 4-07 с фильтрованным Си K_{α} излучением.

Методами рентгеноспектрального микроанализа и сканирующей электронной микроскопии исследовалось распределение химических элементов по поверхности образцов. Исследования проводили в растровом электронном микроскопе CamScan S4 с системой рентгеновского энергодисперсионного анализа Link AN10/55S.

По данным рентгенофазового анализа (рис. 3) исходный образец представлял собой твердый раствор Sb_{1-x}As_x, о чем свидетельствует смещение характерных линий сурьмы в сторону меньших

значений межплоскостных расстояний, что соответствует твердому раствору, обогащенному Sb. Через 48 ч после обработки импульсным магнитным полем наряду с линиями твердого раствора, обогащенного сурьмой, появились линии, соответствующие твердому раствору, обогащенному мышьяком, что говорит о распаде исходного твердого раствора на два других.

Результаты исследования образцов Sb_{0,8}As_{0,2} методом рентгеноспектрального микроанализа представлены на рис. 4.

Как видно из представленных данных, кратковременное (секунды) воздействие ИМП на кристаллы Sb_{0,8}As_{0,2} инициирует долговременное (при T=300 K) пространственное перераспределение компонентов твердого раствора. В результате чего на первом этапе происходит обогащение поверх-

Рис. 3. Штрих-диаграммы сплава Sb_{0.8}As_{0.2} (приведены наиболее интенсивные линии): 1 — до обработки; 2, 3, 4 — через 1, 2 и 12 дней после обработки ИМП.

Рис. 4. Планарное распределение элементного состава приповерхностного слоя образца $Sb_{0,8}As_{0,2}$: a -до, $\delta -$ через 6 дней; e -через 12 дней после воздействия ИМП, серый цвет — твердый раствор $Sb_{1-x}As_x$, черный цвет — сурьма. Размер изображения 500×500 мкм.

ности кристалла сурьмой с выделением её в отдельные кластеры, что наглядно проявляется на картах планарного распределения элементного состава приповерхностного слоя образца $Sb_{0,8}As_{0,2}$ (рис. 4, δ , ϵ).

Процентное содержание скоплений Sb, As и твердого раствора $Sb_{1-x}As_x$ в приповерхностном слое (~ 1 мкм) исследуемого участка кристалла в различные моменты времени после воздействия ИМП дано в таблице 3. Максимальная концентрация свободной сурьмы, выделившейся в кластеры, наблюдалась через 12 суток после воздействия ИМП, после чего концентрация сурьмы монотонно снижается (рис. 4, c).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Совокупность полученных экспериментальных результатов свидетельствует о том, что кратковременное (секунды) воздействие слабых ИМП на кристаллы твердых растворов в системе Sb — As приводит к долговременному низкотемпературному перераспределению компонентов.

Необходимо отметить, что для использовавшихся ИМП выполняется условие $\mu_n B << kT$, (где μ_n — магнетон Бора, В — индукция магнитного поля, k — коэффициент Больцмана), то есть изменение энергии электрона в магнитном поле за

Таблица 3. Относительное содержание сурьмы, мышьяка и твердого раствора (%) в приповерхностном слое образца Sb_{0.8}As_{0.2}

Компонент	До воздей-	Время после воздействия ИМП (сутки)		
	ствия инин	6	12	
As	2,1	1,2	2,6	
Sb	31,5 34,6		42,6	
Sb + As	66,4	64,2	54,8	

счет эффекта Зеемана пренебрежимо мало по сравнению с кинетической энергией теплового движения, приходящейся на одну степень свободы электрона. Другими словами энергетическое воздействие ИМП крайне мало и не может быть причиной наблюдавшихся эффектов. Напряженность электрического поля, индуцируемого магнитными импульсами, по ранее делавшимся оценкам [7] не превышает 50 В/см, что также недостаточно для радикальных изменений структуры кристалла.

Эффекты воздействия ИМП на кристаллы твердых растворов предлагается интерпретировать с учетом неизбежного присутствия собственных дефектов.

Точечные дефекты и их ассоциаты оказывают существенное влияние на структурночувствительные свойства кристаллических тел. Комплексы собственных точечных дефектов в диамагнитных кристаллах, которыми являются исследуемые твердые растворы, могут обладать магнитным моментом [8]. Возможно, внешние магнитные поля, воздействуя на такие комплексы, способны вызывать в них интеркомбинационные переходы, приводящие к ослаблению связей и распаду самих комплексов. Образующийся при этом поток быстродиффундирующих к местам стока (в том числе к поверхности) вакансий, приводит к обогащению поверхности одним из компонентов. Это должно приводить к релаксации дефектной структуры кристалла и изменению его структурночувствительных параметров.

Представления о спин-зависимых процессах ИМП-индуцированного распада примеснодефектных комплексов с высвобождением быстродиффундирующих точечных дефектов рассматривались в работах Левина М.Н. и сотр. [7, 9].

Таким образом, на основании совокупности полученных экспериментальных данных можно заключить, что результатом воздействия ИМП на сплавы Sb_{1-x}As_x является термодинамически обусловленный распад твердых растворов.

Известно, что присутствие вакансий в кристалле энергетически более выгодно не в изолированном состоянии, а в составе вакансионных комплексов. Диффузия вакансий мышьяка, образовавшихся при распаде комплексов под действием ИМП, к поверхности эквивалентна «залечиванию» их в объеме кристалла атомами мышьяка, диффундирующими навстречу своим вакансиям с поверхности. Уход атомов мышьяка вглубь кристалла приводит к обогащению приповерхностного слоя вторым компонентом твердого раствора — сурьмой. При этом в образце устанавливается равновесная концентрация вакансий, соответствующая температуре наблюдения. Далее следует диффузия атомов сурьмы из областей ее повышенной концентрации вглубь кристалла и снижение её концентрации в приповерхностном слое.

СПИСОК ЛИТЕРАТУРЫ:

1. *Wretblad P.E.* blad // Geol. foren. Stockholm forhandl. 1941. V.63. P.19—48.

2. *Trzebiatowski W., Bryjak E. //* Z. Anorg. Chem. 1938. V.238. P.255—267.

3. Семенова Г.В., Сушкова Т.П., Козлова Ю.В. // Журнал физической химии. 2002. Т. №9. С. 1600— 1605.

4. Зельдович Я.Б., Бучаченко А.Л., Франкевич Е.Л. // УФН. 1988. Т.155. №1. С.3—45.

5. Удовский А.Л. // Докл. АН ССР. 1973. Т.209. С.1377—1379.

6. Удовский А.Л., Иванов О.С. // Журнал физической химии. 1977. Т. 51. №4. С. 796—798.

7. Левин М.Н., Зон Б.А. // ЖЭТФ. 1977. Т.111, вып. 4. С. 1373—1397.

8. *Моргунов Р.Б.* // Успехи физических наук. 2004. Т. 174. №2. С. 1312—153.

9. Левин М.Н., Семенова Г.В., Сушкова Т.П. // Докл. Ак. Наук. Сер. Физика. 2003. Т. 388. № 1. С. 11—13. 10. Mansuri Q.A. // J.Chem.Soc. 1928. V.2. P.2107-2110.

11. *Shin C.H., Peretti E.A.* // Trans. Amer. Soc. Metals. 1956. V.48. №2. P.706—711.

12. Францевич И.Н., Воронов Ф.Ф., Бакута С.А. — Киев: Наукова Думка, 1982. — 286 с.

13. Баранский П.И. Полупроводниковая электроника. Киев: Наукова Думка, 1975. 704 с.

14. Андерсон О. Физическая акустика. Динамика решетки. М.: Мир, 1968. Т.3, ч. Б. 391 с.

Семенова Галина Владимировна, д.х.н., профессор кафедры общей химии Воронежского государственного университета, e-mail: semen157@chem.vsu.ru

Сушкова Татьяна Павловна, кандидат химических наук, доцент кафедры общей химии ВГУ, тел. (4732) 208-610

Агапов Борис Львович, кандидат технических наук, доцент Воронежской государственной технологической академии, тел. (4732) 556-347

Шумская Ольга Николаевна, аспирант третьего года обучения кафедры общей химии Воронежского государственного университета, тел. (4732) 208-610

Sushkova Tatiana P., candidate of chemical science, associate professor of chair of General Chemistry of Voronezh State University

Shumskay Olga N., doctor of chemical science, professor of chair of of General Chemistry of Voronezh State University; e-mail: semen157@chem.vsu.ru

Semenova Galina V., post-graduate student of chair of General Chemistry of Voronezh State University

Agapov Boris L., candidate of technical sciences, associate professor of Voronezh State Technological Academy