УДК 661.881

ИССЛЕДОВАНИЕ КОЭФФИЦИЕНТА ДИФФУЗИОННОЙ И ОСМОТИЧЕСКОЙ ПРОНИЦАЕМОСТИ ОЛОВА СЕРНОКИСЛОГО НА ДВУХКАМЕРНОЙ ДИФФУЗИОННО-ОСМОТИЧЕСКОЙ ЯЧЕЙКЕ

© 2008 г. С. В. Ковалев, С. И. Лазарев, Г. С. Кормильцин, К. С. Лазарев

Тамбовский государственный технический университет, ул. Мичуринская 112а, 392000 Тамбов, Россия Поступила в редакцию: 30.07.2008 г.

Аннотация. В данной работе представлены экспериментальные данные по влиянию концентрации раствора и температуры на диффузионную и осмотическую проницаемость мембраны МГА-95 в водном растворе олова сернокислого. Опыты проводились на экспериментальной диффузионно-осмотической ячейке. Исследования проведены при изменении концентрации олова сернокислого в исходном растворе 0,2; 0,3; 0,75; 1 кг/м³ при температурах 295; 303; 311; 318 К.

Ключевые слова: диффузионная и осмотическая проницаемость, мембраны, водные растворы.

введение

В расчетах мембранных аппаратов плоскокамерного типа используют коэффициент диффузии вещества в мембране. Однако данные величины экспериментально определить сложно, поэтому в расчетах используют коэффициенты диффузионной и осмотической проницаемости. Зная коэффициенты диффузионной и осмотической проницаемости можно оценить вклад диффузионного и осмотического потока в массоперенос. Коэффициент диффузионной и осмотической проницаемости можно определить опытным путем. Наиболее простой является плоскокамерная ячейка рис. 1 [1].

Диффузионная проницаемость мембран является аналогом диффузии, которая характеризуется коэффициентом диффузионной проницаемости Р_д. Взаимосвязь между коэффициентом диффузии и коэффициентом диффузионной проницаемости характеризуется следующей зависимостью:

$$P_{a}=Dk; \tag{1}$$

где P_{∂} — коэффициент диффузионной проницаемости; D — коэффициент диффузии растворенного вещества в мембране; k — коэффициент распределения растворенного вещества между мембраной и растворителем.

МЕТОДИКА ЭКСПЕРИМЕНТА

Установка состоит из термостатируемой ячейки (I—II), измерительных капилляров (13, 14), емкостей для исходных (2, 4) и отработанных (3, 5) растворов.

Основным элементом установки является ячейка. Она состоит из двух камер (I) и (II), которые разделены исследуемой мембраной (1).

При исследовании диффузионной и осмотической проницаемости, мембрана, во избежания прогиба под действием давления и температурных напряжений, зажималась между решетками (15), выполненными из полиметилметакрилата.

Перемешивание раствора в камерах (I) и (II) осуществлялось магнитной мешалкой (6, 7). Для поддержания необходимой температуры растворов, в камерах ячейки были встроены теплообменники (16), (17), в которых циркулировала вода из термостатов (12), которые были подключены к устройству подвода электрического тока (11). Контроль температуры в камерах (I) и (II) осуществлялся с помощью термопар (8), (9), подключенных к потенциометру (10). Объем камер ячейки — 0,6 · 10⁻³ м³, рабочая площадь мембран с учетом экранирования составляла 6 · 10⁻⁴ м². Камеры ячейки были изготовлены из полиметилметакрилата.

Методика проведения исследований по определению коэффициентов диффузионной и осмотической проницаемостей сводилась к следующему. Исследуемая мембрана предварительно подготавливалась к работе и собиралась измерительная ячейка (рис. 1). Камера (I) заполнялась раствором определенной концентрации, а камера (II) дистил-

Рис. 1. Схема двухкамерной диффузионно-осмотической ячейки. *1* — мембрана; *2*, *4* — емкости для исходных растворов; *3*, *5* — емкости для отработанных растворов; *6*, *7* — мешалки; *8*, *9* — термопары; *10* — потенциометр; *11* — устройства подвода электрического тока; *12* — термостат; *13*, *14* — измерительные капилляры; *15* — решет-ка; *16*, *17* — теплообменники.

лированной водой. Для установления стационарного диффузионного и осмотического потока, растворы оставались в камерах продолжительное время (11—13 часов), а затем сливались. После этого камеры ячейки в течение 15 минут промывались дистиллированной водой. Затем проводили заполнение камер, как и в предшествующем опыте: камеру (I) заполняли раствором той же концентрации, а камеру (II) дистиллированной водой. Далее проводили отбор проб из камер через емкости отработанных растворов (3) и (5) и пополняли камеры (I) и (II) из емкости исходных растворов (2) и (4), и проводили опыт по определению диффузионной и осмотической проницаемости. Время опыта составляло 5 часов.

По количеству перенесенного растворенного вещества рассчитывали коэффициент диффузионной проницаемости по формуле: [2]

$$P_{\partial} = \frac{C_2 \cdot V_2 \cdot \delta}{(C_1 - C_2) \cdot S \cdot \tau},$$
(2)

где P_{∂} — коэффициент диффузионной проницаемости, м²/с; C_1 — концентрация растворенного вещества в исходном растворе, кг/м³; C_2 — концентрация растворенного вещества перешедшего через мембрану, кг/м³; V_2 — объем исследуемого раствора, м³; δ — толщина мембраны, м; S — рабочая площадь мембраны, м²; τ — время проведения эксперимента, с.

Осмотическая проницаемость мембран P_{oc} может быть оценена по коэффициенту самодиффузии $D_{C,\mathcal{A}}$ [3]. При этом следует учитывать, что вода в полимере может находится в связанном и свободном состоянии. К связанной воде относят воду, входящие в гидратные оболочки полимерной матрицы. К свободной воде относится вода, не участвующая во взаимосвязи с полимерной матрицей. Между этими состояниями нет четкой границы. Кроме того, между связанной и свободной водой происходит непрерывный обмен.

Количество воды, прошедшее через мембрану, и интенсивность ее осмотического переноса в камеру

(I) измерялось по увеличению объема *V* в измерительном капилляре (13).

Осмотический поток растворителя через единицу площади мембраны определяется по следующей формуле [2]:

$$V_{oc} = \frac{P_{oc}}{\delta} (C_{nep} - C_{pem}) , \qquad (3)$$

где V_{oc} — осмотический поток растворителя; δ — толщина мембраны; C_{nep}, C_{pem} — концентрации пермеата и ретентата, соответственно; P_{oc} — ко-эффициент осмотической проницаемости.

При практических расчетах удобнее пользоваться коэффициентом осмотической проницаемости воды через единицу площади мембраны при градиенте концентрации, равным единице [4].

$$P_{\rm oc} = \frac{V \cdot \delta}{(C_1 - C_2)S \cdot \tau},\tag{4}$$

где P_{oc} — коэффициент осмотической проницаемости, м⁵/кг с; V — объем перенесенного растворителя, м³; δ — толщина набухшей мембраны, м; S — рабочая площадь набухшей мембраны, м²; $(C_1 - C_2)$ — разность концентраций растворенного вещества, кг/м³; τ — время проведения эксперимента, с.

По объему перенесенного растворителя и рабочим параметрам рассчитывали коэффициент осмотической проницаемости по формуле (4) приведенной выше.

Данная установка предназначена для исследования диффузионной и осмотической проницаемости полимерных мембран для двух, трех и многокомпонентных растворов и показателей отравления и отработки. Также на ней можно проводить эксперименты по изучению влияния наложения магнитных, электрических и температурных полей на разделяемый раствор.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Были проведены эксперименты по определению коэффициентов диффузионной (P_{∂}) и осмотической (P_{omc}) проницаемости на мембране МГА-95 для водного раствора олова сернокислого с исходными концентрациями соли в растворе 0,2; 0,3; 0,75; 1 кг/м³ при температурах 295; 303; 311; 318 К. Полученные экспериментальные данные приведены на рис. 2—7.

Анализируя зависимость коэффициента диффузионной проницаемости от концентрации приведенную на рис. 2. Необходимо иметь в виду, что растворимое вещество может диффундировать в мембране как через поровое пространство, заполненное раствором, так и через аморфные области набухшей мембраны. С увеличением концентрации раствора олова сернокислого протекает процесс сужения и далее закупоривания пор мембраны, вызванный сорбционными процессами, что приводит к снижению коэффициента диффузионной проницаемости [5]. Очевидно, раствор олова сернокислого не пластифицирует мембрану или пластифицирует ее незначительно, поэтому снижение коэффициента диффузионной проницаемости наблюда-

Рис. 2. Зависимость коэффициента диффузионной проницаемости от исходной концентрации олова сернокислого в растворе.

ется на всем исследуемом интервале изменения концентрации раствора олова сернокислого.

На рис. 3 представлена экспериментальная зависимость коэффициента осмотической проницаемости от концентрации, и с увеличением ее из-за сорбции мембранами растворимых веществ происходит процесс изменения пористости структур (из-за набухаемости мембран, сужения диаметра пор) и, как следствие, снижение коэффициента осмотической проницаемости. А для зависимости осмотического потока растворителя от исходной концентрации рис. 4, можно сделать вывод о том, что растворитель (вода) при переходе через мембрану всегда пытается разбавить раствор с большей концентрацией олова сернокислого, т.е. осмотический поток увеличивается с ростом концентрации в соседней камере. Из экспериментальных зависимостей коэффициента диффузионной и осмотической проницаемости от температуры рис. 5 и рис. 6, видно, что осмотическая и диффузионная проницаемость увеличивается с ростом температуры. А с ростом осмотического потока от температуры рис. 7, действует тоже утверждение, что и в описании ранее. Так же стоит отметить, что характер кривых может меняться, исходя из условия, что мембраны имеют разные заряды поверхностей.

Рис. 3. Зависимость коэффициента осмотической проницаемости от исходной концентрации олова сернокислого в растворе.

Рис. 4. Зависимость осмотического потока растворителя от исходной концентрации олова сернокислого в растворе.

Рис. 5. Зависимость коэффициента диффузионной проницаемости от температуры исходного раствора.

Рис. 6. Зависимость коэффициента осмотической проницаемости от температуры исходного раствора.

Рис. 7. Зависимость осмотического потока растворителя от температуры исходного раствора.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Установлено, что с повышением температуры раствора олова сернокислого значение коэффициента диффузионной и осмотической проницаемости увеличивается. Это соответствует общепринятым представлениям о влиянии температуры на коэффициент диффузионной проницаемости воды в полимерах [3, 6]. Так же из работы видно, что растет осмотический поток растворителя с ростом температуры.

выводы

Проанализированы и получены экспериментальные данные по коэффициенту диффузионной и осмотической проницаемости олова сернокислого на мембране МГА-95 в зависимости от концентрации и температуры раствора. Установлено, что с увеличением исходной концентрации олова сернокислого в растворе значение коэффициента диффузионной и осмотической проницаемости уменьшается, а с повышением температуры раствора значение коэффициента диффузионной и осмотической проницаемости по олову сернокислому увеличивается. Так же увеличивается осмотический поток растворителя на всем исследованном интервале концентраций.

СПИСОК ЛИТЕРАТУРЫ

1. Лазарев С.И., Коробов В.Б. Диффузионная, осмотическая и электроосмотическая проницаемость обратноосмотических мембран. Журнал прикладной химии. 2001. Т. 74. Вып. 2. С. 244—249.

2. Лазарев С.И., Коробов В.Б., Коновалов В.И. Исследование диффузионной и осмотической проницаемости полимерных мембран. Тамбов. Тамб. Ин-т хим. машиностр, 1989. 12 с.

3. *Николаев Н.И*. Диффузия в мембранах. М.: Химия, 1980. 232 с.

4. Лазарев С.И., Горбачев А.С. Исследование диффузионной и осмотической проницаемости водного раствора сульфанилата натрия через обратноосмотические мембраны. Химия и химическая технология. 2005. Т. 48. Вып. 2. С. 113—115. 5. *Хванг С.-Т., Каммермейер К.* Мембранные процессы разделения / Пер. с англ./ Под ред. Ю.И. Дытнерского. М.: Химия, 1981. 464 с.

6. *Рейтлингер С.А.* Проницаемость полимерных материалов. М.: Химия, 1974. 272 с.

Лазарев Сергей Иванович, д.т.н., профессор, зав. кафедрой прикладной геометрии и компьютерной графики Тамбовского государственного технического университета, e-mail: geometry@mail.nnn.tstu.ru

Ковалев Сергей Владимирович, аспирант кафедры прикладной геометрии и компьютерной графики Тамбовского государственного технического университета, e-mail: sseedd@mail.ru

Кормильцин Геннадий Сергеевич, к.т.н., доцент кафедры прикладной геометрии и компьютерной графики Тамбовского государственного технического университета, e-mail: 6mbb1982@mail.ru

Лазарев Константин Сергеевич, студент кафедры прикладной геометрии и компьютерной графики Тамбовского государственного технического университета, e-mail: geometry@mail.nnn.tstu.ru

Kovalev Sergey V., post-graduate student of chair of Applied geometry and computer graphics of Tambov State Technical University; e-mail: sseedd@mail.ru

Lazarev Sergey I., doctor of technical science, professor, head of chair of Applied geometry and computer graphics of Tambov State Technical University; e-mail: geometry@ mail.nnn.tstu.ru

Kormiltsin Gennady S., candidate of technical sciences, associate professor of chair of Applied geometry and computer graphics of Tambov State Technical University; e-mail: 6mbb1982@mail.ru

Lazarev Konstantin S., chair of Applied geometry and computer graphics of Tambov State Technical University; e-mail: geometry@mail.nnn.tstu.ru