УДК 539.67:669.15

СООТНОШЕНИЕ МАГНИТОМЕХАНИЧЕСКОГО ЗАТУХАНИЯ И ДЕФЕКТА МОДУЛЯ УПРУГОСТИ В СПЛАВАХ ЖЕЛЕЗА С СИЛЬНЫМ ЗАТУХАНИЕМ

© 2008 г. А. И. Скворцов

Вятский государственный университет, Киров Поступила в редакцию: 5.11.07

В демпфирующих сплавах железа с магнитомеханической природой внутреннего трения наилучшее соответствие максимума логарифмического декремента на его амплитудной зависимости имеет место с релаксированным по сравнению с нерелаксированным и среднегеометрическим дефектами модуля упругости. Сравниваются температурные зависимости максимума логарифмического декремента на его амплитудной зависимости и динамического модуля упругости.

ВВЕДЕНИЕ

Существуют различные приоритеты при использовании таких характеристик релаксации, как нерелаксированного релаксированного, среднегеометрического дефектов модуля упругости: $\Delta_{\rm H} = (M_{\rm H} - M_{\rm p})/M_{\rm p}, \ \Delta_{\rm cr} = (M_{\rm H} - M_{\rm p})/M_{\rm cr}$. Представляет интерес установить для сплавов с различным значением магнитомеханического затухания, какая из указанных характеристик релксации лучше коррелирует с таким параметром амплитудной зависимости внутреннего трения, как максимум магнитомеханического затухания $\delta_{\rm m}$.

Известно, что для демпфирующих сплавов на основе Fe между магнитомеханическим затуханием и динамическим модулем упругости на их амлитудной зависимости существует обратная связь [1—3]. Представляет интерес выявить изменение магнитомеханического затухания и динамического модуля упругости в зависимости от температуры испытаний. Таких работ для сплавов на основе Fe с сильным магнитомеханическим затуханием (Fe — Cr — V, Fe — Co — Si) автору не известны.

МЕТОДИКА И МАТЕРИАЛ ИССЛЕДОВАНИЯ

Исследовали Fe и его сплавы с Cr, Co, Al, Mo, Si, V с ферритной структурой. Различный уровень магнитомеханического затухания и дефекта модуля упругости наряду с варьированием состава сплава достигали 1) отжигом при различных температурах в интервале 600—1150 °C, 2) измерением без магнитного поля и в переменном магнитном поле частотой 50 Гц и напряженностью 6 А/см.

Амплитудную зависимость логарифмического декремента δ и частоты колебаний f определяли методом крутильных колебаний на образцах с размерами рабочей части: диаметром 5 и длиной 30 мм. Дефект динамического модуля упругости определяли как функцию частот колебаний: $\Delta_{\rm H} = (f_0^2 - f_{\rm min}^{\ \ 2})/f_0^2$, $\Delta_{\rm p} = (f_0^2 - f_{\rm min}^{\ \ 2})/f_{\rm min}^{\ \ 2}$, $\Delta_{\rm cr} = (f_0^2 - f_{\rm min}^{\ \ 2})/f_{\rm min}$, Определение частот f_0 и $f_{\rm min}$ показано на рис. 1, σ . При температурных испытаниях средняя скорость нагрева составляла 150 К/ч. Доменную структуру выявляли методом порошковых фигур.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлена амплитудная зависимость логарифмического декремента и квадрата частоты колебаний для сплава Fe с сильным магнитомеханическим затуханием, характерная для исследованных сплавов.

На рис. 2, a, δ , ϵ представлены результаты соответствия максимума логарифмического декремента на его амплитудной зависимости и различных видов дефекта модуля упругости в большом интервале их значений, а на рис. 2, ϵ — обобщающий график. Видно, что наилучшее соответствие характеристика δ_m имеет с Δ_p . Это соответствие представлено квадратичным уравнением (1):

$$\Delta_p = -0.0614\delta_m^2 + 0.839\delta_m + 0.0276 \tag{1}$$

Рассмотренную ситуацию полезно сравнить с зависимостью логарифмического декремента и удельной демпфирующей способности ψ от отношения соседних амплитуд колебаний A_i/A_{i+l} . При

Рис. 1. Зависимость логарифмического декремента (a) и квадрата частоты колебаний (δ) от амплитуды крутильных колебаний для сплава Fe — 8% Cr — V при измерении без магнитного поля (1, 3) и в постоянном магнитном поле насыщения — напряженностью 30 кА/м (2, 4).

Рис. 2. Соотношение между среднегеометрическим (a), нерелаксированным (δ), релаксированным (δ) дефектами динамического модуля упругости и максимумом логарифмического декремента на его амплитудной зависимости δ_m и обобщающий график (ε).

этом характеристики внутреннего трения определены уравнениями (2) и (3):

$$\delta = \ln(A_i / A_{i+1}) \tag{2}$$

$$\Psi = (A_i^2 - A_{i+1}^2)/A_i^2 = I - (A_{i+1}/A_i)^2$$
 (3)

Из рис. З видно, что логарифмический декремент более адекватно отражает темп снижения амплитуды колебаний по сравнению с характеристикой ψ , особенно, при больших значениях величины A_i/A_{i+l} . Поэтому для высокодемпфирующих сплавов использование характеристики δ более предпочтительно по сравнению с характеристикой ψ .

Типичная доменно-зеренная структура после высокотемпературного отжига рассматриваемых сплавов Fe представлена на рис. 4.

На рис. 5 дана температурная зависимость характеристик δ_m и f_{min}^{-2} в интервале температур, меньших точки Кюри. Видно, что если характеристика δ_m с повышением температуры может увеличиваться (все сплавы), уменьшаться (сплав на основе Fe — Cr — Al), то характеристика динамического модуля упругости f_{min}^{-2} с повышением температуры

Рис. 3. Зависимость логарифмического декремента δ и удельной демпфирующей способности ψ от отношения соседних амплитуд колебаний A_i/A_{i+1} .

Рис. 4. Доменно-зеренная структура сплава Fe — 7% Cr — V после отжига 1150 °C. \times 63.

монотонно уменьшаться для всех типов представленных высокодемпфирующих сплавов.

Следует отметить, что анализ причин температурного хода указанных и подобных им характеристик с точки зрения структуры практически не проводился. Изменение этих характеристик в зависимости от температуры сопоставлялось, в ос-

Рис. 5. Зависимость максимума логарифмического декремента (a) и минимума квадрата частоты колебаний (δ) на их амплитудной зависимости от температуры испытаний для отожженных сплавов на основе: Fe — 10% Cr — V (I), Fe — 6% Cr — Al (2), Fe — 6% Co — Si (3), — при измерении без магнитного поля.

новном, с изменением характеристик других физических свойств, например, с константой анизотропии, характеристиками магнитострикции [4]. Поэтому несомненно, что перспективным для выявления природы температурной зависимости характеристик магнитомеханического затухания является изучение эволюции доменной структуры. Об этом свидетельствуют данные, например, работ [5, 6] о связи магнитомеханического затухания с перестройкой доменной структуры.

выводы

- 1. Между характеристикой δ_m и различными видами дефектов динамического модуля упругости для сплавов Fe в большом диапазоне величин затухания (δ_m = 0,02—2) имеется пропорциональная зависимость. Наилучшее соответствие имеет место между характеристиками δ_m и Δ_n .
- 2. Соотношение зависимостей характеристик δ_m и f_{min}^2 от температуры испытаний отличается от соотношения их зависимостей от амплитуды механических колебаний. В зависимости от температуры испытаний эти характеристики могут меняться как пропорционально, так и обратнопропорционально. Представляется перспективным изучение

СООТНОШЕНИЕ МАГНИТОМЕХАНИЧЕСКОГО ЗАТУХАНИЯ И ДЕФЕКТА МОДУЛЯ УПРУГОСТИ...

эволюции доменной структуры для выявления природы температурной зависимости характеристик магнитомеханического затухания.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Калинин Ю. Е.* Автореф. дис. док. физ.-мат. наук. Воронеж: ВПИ, 1991.
- 2. *Головин И. С., Варвус И. А.* // Металловедение и термическая обработка металлов. 1994. № 1. С. 26.
- 3. *Скворцов А. И.* Автореферат дис. док. техн. наук. Екатеринбург: УГТУ, 1995.
- 4. *Кекало И. Б.* // Металловедение и термическая обработка. Т. 7: Итоги науки и техники. М.: ВИНИТИ, 1973. С. 5.
- 5. *Скворцов А. И.* // Известия АН. Сер. физ. 1993. Т. 57. № 11. С. 159.
- 6. *Скворцов А. И.* // Физика металлов и металловедение. 1993. Т. 75. № 6. С. 118.