УДК 66.021.3:66.011

КИНЕТИКА ЭЛЕКТРОБАРОМЕМБРАННОГО РАЗДЕЛЕНИЯ ВОДНЫХ СУЛЬФАТСОДЕРЖАЩИХ РАСТВОРОВ

© 2008 г. С. И. Лазарев, А. С. Горбачев, Г. С. Кормильцин, О. А. Абоносимов

Тамбовский государственный технический университет Поступила в редакцию: 3.12.07

Установлены закономерности кинетики массопереноса в процессе очистки и концетрирования промышленных сульфатсодержащих растворов электробаромембранными методами с использованием обратноосмотических мембран, их математическое описание и аппаратурное оформление.

введение

Основой разработки новых методов мембранного разделения растворов является исследование влияния различных физических полей на кинетику процесса. Одним из таких полей является электрическое. В предлагаемой работе экспериментально исследовались кинетические характеристики электробаромембранного разделения как модельных, так и промышленных растворов производства оптических отбеливателей. Для исследований были использованы рабочие ячейки с плоскими мембранами и электробаромембранный аппарат рулонного типа [1]. По результатам исследований разработана математическая модель и инженерная методика расчета процесса, которые учитывают влияние важнейших параметров на коэффициент задерживания и проницаемость промышленных мембран.

МЕТОДИКА

В качестве объектов исследования использовались модельные растворы, а также промышленные стоки, получаемые в процессах синтеза полупродуктов оптических отбеливателей на ОАО «Пигмент» (г. Тамбов). Данные стоки характеризуются тем, что содержат органические и неорганические вещества. В качестве модельных растворов использовались растворы веществ, входящие в состав промышленных стоков. Исследования водопроницаемости и коэффициента задерживания мембран проводились на лабораторной установке, представленной на рис. 1. Основным

Рис. 1. Схема электробаромембранной установки.

разделительным элементом установки является рабочая ячейка (3), в которой непосредственно происходит процесс электробаромембранного разделения. Из расходной емкости (1) через систему вентилей раствор нагнетался в камеру разделения плунжерным насосом НД 100/63 (2). Пройдя рабочую ячейку (3), дроссель (4) и ротаметры (5),частично разделенный раствор возвращался обратно в расходную емкость (1). Для сглаживания пульсаций давления и расхода раствора в системе установлен ресивер (6), который представляет собой цилиндрический сосуд (V = 3,5 л), предварительно заполненный сжатым воздухом до давления, составляющего 30—40 % от рабочего.

Давление в установке контролируется образцовым манометром (8). В качестве измерительного манометра в установке использовался электроконтактный манометр (7), который выключает плунжерный насос с помощью электроконтактного реле при повышении давления выше установленного значения. Расход раствора задавался рабочим ходом плунжерного насоса (2). Температура раствора в системе поддерживалась водяным термостатом (10) и измерялась потенциометром (11) и термометром (12). Регулирование напряжения и, как следствие, плотности тока в процессе электробаромембранного разделения производилось блоком питания (13). Жидкость, прошедшая в процессе разделения через мембраны, собиралась в емкости (14). Регулировка давления в системе осуществлялась игольчатым вентилем (4).

Значение коэффициента задерживания *К* определяли по формуле:

$$K = 1 - \frac{C_{nep}}{C_{ucx}},$$

где C_{nep} и C_{ucx} — концентрация растворенного вещества в пермеате и в исходном растворе соответственно. Значение водопроницаемости G рассчитывали по зависимости:

$$G = \frac{V}{F \cdot \tau},$$

где V — объем пермеата, F — рабочая площадь мембраны, τ — время процесса.

Исследования диффузионной, осмотической и электроосмотической проницаемости мембран проводились на установке, изображенной на рис. 2. Установка состоит из двух камер (I, II), выполненных из оргстекла, между которыми герметично закреплен образец мембраны (1) и между двумя перфорированными пластинами (13) из диэлектрического

Рис. 2. Установка для изучения диффузионного, осмотического и электроосмотического потока.

материала для обеспечения жесткого положения мембраны. Для исходного и отработанного раствора имеются емкости (2—5). Ячейка снабжена электродами (10), и электромагнитными мешалками. Для создания электрического потенциала служит источник постоянного тока (9), а для измерения и контроля напряжения и значения электрического тока в цепь включены вольтметр (7) и амперметр (8). Уровни жидкости определяли капиллярами (11, 12).

Коэффициент диффузионной проницаемости рассчитывали по формуле:

$$P_{o} = \frac{C_2 \cdot V_2 \cdot \delta}{(C_1 - C_2) \cdot S \cdot \tau}$$

Коэффициент осмотической проницаемости рассчитывается по объему перенесенного растворителя и рабочим параметрам:

$$P_{OCM} = \frac{V \cdot \delta}{(C_1 - C_2) \cdot S \cdot \tau},$$

V — объем перенесенного растворителя, δ — толщина набухшей мембраны, S — рабочая площадь набухшей мембраны, $C_{1,2}$ — концентрации растворенного вещества в камерах I и II, τ — время процесса. Коэффициент электроосмотической проницаемости рассчитывали как:

$$P_{\scriptscriptstyle 90} = \frac{V}{F \cdot i \cdot \tau};$$

где V— объем воды, прошедшей через мембрану; F— рабочая площадь мембраны; i— плотность тока. Важными характеристиками процесса обратного осмоса являются коэффициент задерживания и водопроницаемость. Они исследовались как при наложении электрического поля, так и без него. Влияние электрического поля изучали на мембранах МГА-90Т и ESPA и на растворах сульфанилата натрия концентрации 10; 50; 100 кг/м³ при изменении плотности тока от 0 до 2 А/м². Значение коэффициента задерживания для сульфанилата натрия определяли по содержанию анионов п-аминобензольной кислоты в растворе, которые получаются при диссоциации сульфанилата натрия в растворе. Результаты экспериментов представлены на рис. 3.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Проведенные эксперименты выявили следующие закономерности. На прианодной мембране с увеличением плотности тока наблюдается увеличение коэффициента задерживания. В то же время наблюдается незначительное уменьшение коэффициента задерживания для прикатодной мембраны. Это связано с отрицательным зарядом анионов паминобензольной кислоты. При увеличении концентрации коэффициент задерживания на прианодной мембране МГА-90Т возрастает незначительно. Это связано с увеличением сорбции анионов паминобензольной кислоты активным слоем мемб-

Рис. 3. Зависимость значений коэффициента задерживания и водопроницаемости от плотности тока. *a*, *в* — МГА-90Т; *б*, *г* — ESPA: *1*, *2* — $C_{\text{нсх}} = 10 \text{ кг/м}^3$; *3*, *4* — $C_{\text{нсх}} = 50 \text{ кг/м}^3$; *5*, *6* — $C_{\text{нсх}} = 100 \text{ кг/м}^3$, — – прианодная мембрана, – – – – прикатодная мембрана

раны, что ведет к закупорке пор. На прикатодной мембране с увеличением плотности тока наблюдается противоположная картина. Для мембраны ESPA с увеличением концентрации раствора происходит уменьшение значения коэффициента задерживания.

Анализ этих зависимостей показывает, что с увеличением плотности тока повышается водопроницаемость. Это связано с увеличением составляющей электроосмотического потока и изменением структуры пограничного слоя. Однако при этом обнаружено различное влияние электрического поля на производительность прикатоной и прианодной мембран. На прикатодной мембране наблюдалось несколько большее увеличение водопроницаемости по сравнению с прианодной. Это, вероятно, связано с более высокой степенью гидротации ионов натрия по сравнению с анионами п-аминобензольной кислоты и «блокировкой» пор на прианодной мембране за счет переноса последних. С увеличением концентрации происходит уменьшении водопроницаемости мембраны, что говорит о влиянии осмотического давления на процесс. При увеличении концентрации разница между водопроницаемостью на прикатодной и прианодной мембранах уменьшается, что опять же объясняется увеличением сорбции анионов n-аминобензольной кислоты активным слоем мембраны и частичкой «закупоркой» пор. Для расчета значений водопроницаемости от давления раствора над мембранной, концентрации и температуры получено следующее выражение:

$$G = k \cdot (P - \Delta \pi) \cdot C^n \left(\frac{T}{T_0}\right)^m,$$

где *k*, *a*, *n*, *m* эмпирические коэффициенты, *T*₀, *T* — реперная (принятая нами 293 К) и рабочая температура разделяемого раствора.

Для расчета коэффициента диффузионной проницаемости была использована следующая апроксимационная зависимость:

$$P_d = a \cdot \exp\left(b \cdot C\right) \cdot \left(\frac{T}{T_0}\right)^m,$$

где *a*, *b*, *m* — коэффициенты, которые находятся по экспериментальным данным для исследуемых мембран.

Для расчета коэффициента осмотической проницаемости было получено уравнение следующего вида:

$$P_{\text{\tiny OCM}} = K_1 \cdot C^n \cdot \exp\left(C \cdot g\right) \cdot \exp\left(\frac{A}{T}\right) ,$$

где: *n*, *K*_{*p*}, *g*, *A* — коэффициенты, зависящие от вида мембраны и растворенного вещества.

При обработке экспериментальных данных по коэффициентам электроосмотической проницаемости была получена следующая эмпирическая формула:

$$P_{_{3oc}} = B \cdot \exp(nC) \exp\left(\frac{A}{T}\right)$$

где: *С* — концентрация раствора; *Т* — температура; *А*, *В*, *п* — эмпирические коэффициенты.

При обработке полученных экспериментальных данных для мембран МГА-90Т, ESPA и ОПМ-К выяснилось, что изотермы сорбции для этих мембран и исследуемых растворов достаточно хорошо описываются уравнением:

$$\overline{C} = bC^n \left(\frac{T_0}{T}\right)^m,$$

где: \overline{C} , C — концентрации растворенного вещества в мембране и в растворе; *b*, *n*, *m* — экспериментальные коэффициенты; T_0 , T — рабочая и реперная (принятая как 293 K) температуры.

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ

Разработанная на основе проведенных экспериментов математическая модель процесса и проверка ее адекватности приведены в работах [2—4].

Предлагаемая методика расчета электробаромембранного рулонного аппарата имеет своей целью определение общей рабочей площади мембран. Для определения площади используем основное уравнение массопередачи.

$$F_M = M / \Delta P \cdot K$$

где M — масса вещества, ΔP — движущая сила обратноосмотического процесса, K — коэффициент массопереноса.

Массу вещества определяем из уравнения материального баланса:

$$M = G_{\Pi} \cdot C_{\Pi} = G \cdot C - G_p C_p$$

Коэффициент массопереноса находим по следующему выражению:

$$K = \frac{1}{\frac{1}{\beta + \delta}/P_{\partial}}$$

где β — коэффициент массопереноса от раствора к поверхности мембраны, δ — толщина мембраны, P_{∂} — коэффициент диффузионной проницаемости мембраны.

Значение массотдачи рассчитываем по критериальному уравнению:

$$\beta = \frac{Nu \cdot D}{d_M},$$

где *D* — коэффициент диффузии в свободном объеме, *d*_M — эквивалентный диаметр межмембранной щели.

Обработка расчетно-аналитических данных позволила получить приближенные аппроксимационные соотношения для усредненных коэффициентов массоотдачи по длине канала. После их корректировки по результатам экспериментов получено следующее критериальное уравнение (погрешность ±15%):

$$Nu_m = 1,84 \cdot 10^{-3} \cdot \text{Re}^{0,33} \cdot K_{\Delta P}^{0,18}$$
.

где $K_d = \frac{P_{pao}}{P_H}$, — симплекс учета рабочего дав-

ления.

ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ

Для реализации электробаромембранного разделения растворов предлагается [1] новая конструкция аппарата, представленная на рис. 4. Электробаромембранный аппарат рулонного типа состоит из корпуса 1, выполненного из диэлектрического материала; секционированной перфорированной трубки 2, служащей для отвода прианодного и прикатодного пермеата; обратноосмотической прианодной мембраны 3 и обратноосмотической прикатодной мембраны 4; монополярных электродов анода 5 и катода 6, выполненных из графитовой ткани, которая также является подложкой для мембран и дренажом для отвода прикатодного и прианодного пермеата; 7 — сетки турбулизатора; 8 — устройство для подвода электрического тока.

выводы

На основе проведенных исследований, разработанной математической модели массопереноса и инженерной методики расчета был предложен электробаромембранный способ концентрирования сульфанилата натрия проточным способом с использованием каскадной схемой. На рис. 5 показаны схемы концентрирования сульфанилата натрия на мембране МГА-90Т. Начальное давления для каждого аппарата $P_{\rm H} = 5$ МПа и конечное $P_{\rm K} = 4,5$ МПа. Таким образом, все аппараты находились в одинаковых условиях.

Результаты предлагаемой работы были использованы ОАО «Тамбовская генерирующая компания» для разработки промышленных технологических схем очистки растворов.

СПИСОК ЛИТЕРАТУРЫ

1. С.И. Лазарев, А.С. Горбачев, О.А. Абоносимов. Пат. 2268085 Российская Федерация « Электробамембранный аппарат рулонного типа / опубликовано 20.01.2006 Бюл. № 02.

2. С.И. Лазарев, А.С. Горбачев, О.А. Абоносимов Математическое описание массопереноса в электробаромембранных аппаратах рулонного типа // Математические методы в технике и технологии — ММТТ-19: сб. тр. XIX Международ. науч. конф.: в 10 т. Воронеж: Воронеж. гос. технолог. акад., 2006. Т. 9. С. 68—70.

Рис. 4. Электробаромембранный аппарат рулонного типа.

КИНЕТИКА ЭЛЕКТРОБАРОМЕМБРАННОГО РАЗДЕЛЕНИЯ ВОДНЫХ СУЛЬФАТСОДЕРЖАЩИХ...

Рис. 5. Каскадная схема концентрирования сульфанилата натрия. *а* — с наложением электрического тока, *б* — без наложения электрического тока. *Vu* — скорость подачи раствора в первые ступени раствора 10⁻² м/с, *Vp* — удельная производительность по ретентату 10⁻² м/с, *V*n — удельная производительность по премеату 10⁻⁶ м/с, С — концентрация на входе кг/м³, *Cp* — концентрация в пермеатена каждой ступени входе кг/м³, *n* — число сдвоенных элементов ЭРО900/6,5 в ступени.

3. С.И. Лазарев, А.С. Горбачев. К вопросу математического описания массопереноса в электробаромембранных аппаратах рулонного типа // Ионный перенос в органических и неорганических мембранах: тез. докл. Российской конф. с междунар. участием. Тамбов, 29 мая — 3 июня 2006 г. Тамбов, 2006. С. 46—48 4. Горбачев А.С., Лазарев С.И., Кормильцин Г.С. К вопросу математического описания массоперенноса в электробаромембранных аппаратах рулонного типа // Вестник физико-математического факультета Елецкого государственного университета им. И.А. Бунина. 2006. Вып.12. С. 72—79.