УДК 620

ИССЛЕДОВАНИЕ АНОДНОГО ПОВЕДЕНИЯ ПЕРЕХОДНЫХ МЕТАЛЛОВ В СПИРТОВЫХ СРЕДАХ НЕСТАЦИОНАРНЫМИ ЭЛЕКТРОХИМИЧЕСКИМИ МЕТОДАМИ С ПРИМЕНЕНИЕМ АТОМНО-АБСОРБЦИОННОЙ СПЕКТРОСКОПИИ

© 2007 А.А. Попова

Майкопский государственный технологический университет, Поступила в редакцию 12.10.07

С помощью методов циклической вольтамперометрии, импеданса и атомно-абсорбционной спектроскопии получены данные о начальной стадии формирования анодных пленок на вентильных металлах подгрупп титана, ванадия и хрома в нейтральных спиртовых средах. Установлено значительное влияние адсорбции и комплексообразования на исследуемый процесс, предложены механизмы образования пленок.

введение

Развитие высокотехнологичных отраслей промышленности предъявляет новые требования к электрохимической обработке поверхности электродов из вентильных металлов и обуславливает необходимость разработки технологий и научных основ получения пленок с заданными характеристиками. Важное значение в этом направлении приобретает выявление роли природы растворителя, варьирование которой позволяет формировать пленки не только необходимой толщины, но и контролировать физико-химические и электрохимические свойства поверхностных пленок при анодной поляризации.

Изучение механизмов анодного окисления переходных металлов, включающего хемосорбционные, электрохимические и диффузионные процессы, изменение стехиометрии поверхности электрода и формирование новой фазы, является основной научной проблемой при разработке теории анодных пленок. Применение нестационарных электрохимических методов, подкрепленных данными атомно-абсорбционных измерений, позволяет детализировать представления об анодном поведении переходных металлов в неводных средах.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для исследования использовали электроды из титана ВТ1-О, ванадия 99,99%, ниобия НБ-1, тантала Т4, циркония 99,99%, хрома Cr-Fe 69,99%, молибдена М4ВП, вольфрама ВА. Растворы готовили из предельных алифатических спиртов, перегнанных над CaO, BaO, K₂CO₃ и абсолютированных, перхлората лития марки «х.ч.» и «о.с.ч.», высушенного при 120 °С. Содержание воды, определяемое хроматографически, не превышало 0,0001%. Измерения проводились в электрохимической ячейке с разделенными катодным и анодным пространствами. В качестве вспомогательного электрода применяли платиновый электрод, в качестве электрода сравнения — хлоридсеребряный электрод. Импедансные измерения проводили в специальной ячейке с большим платинированным платиновым электродом. Для получения цикловольтамперограмм использовали потенциостат ПИ-50-1 с программатором ПР-8 и двухкоординатный самописец Н-307. Скорость развертки варьировалась в пределах 0,001—1,0 В/с. Атомноабсорбционные измерения выполнены на приборе A Analyst 300 от Perkin-Elmer. Длина волны аналитической линии 357,9 нм, спектральная ширина щели 0,7 нм. При обработке результатов использовали компьютерную программу расчета концентрации по величине абсорбции.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Цикловольтамперометрические кривые (ЦВА), полученные на исследуемых переходных металлах в спиртовых перхлоратных растворах, имеют три характерные области (рис. 1). Первая отвечает процессу начальной адсорбции компонентов раствора [1] на поверхности электрода и имеет высокую степень обратимости, так как катодный и анодный пики $E_{n\kappa}$ и E_{na} почти симметричны. Раз-

ность между ними не превышает 30—50 мВ и уменьшается при снижении скорости развертки потенциала. Вторая область ($E \rightarrow E_{\kappa p}$) также содержит пики как на кривой прямого (анодного) хода, так и на кривой обратного (катодного) хода. Пики на анодной ветви ЦВА соответствуют окислению металла и формированию целостного тонкого поверхностного слоя, на катодной ветви — разрушению тонкого хемосорбированного поверхностного слоя [2]. Обратимость этой стадии велика, разность между пиками ($_{\Delta}E_n = E_{n\kappa} - E_{na}$) составляет 53—58 мВ (табл. 1).

Величина ${}_{\Delta}E_n$ не чувствительна к изменению природы растворителя и металла для исследованных систем, что свидетельствует об идентичности механизма стадии окисления во всех изучаемых системах. Разность между пиками не только характеризует степень обратимости процесса [3], но и позволяет рассчитать число электронов, участвующих в стадии окисления по уравнению:

$${}_{\Delta}E_n = 2,22 \, \frac{RT}{nF},\tag{1}$$

Рис. 1. Цикловольтамперометрические кривые для хрома в 0,1 М перхлоратном растворе метанола. Скорость развертки потенциала (B/c): *1* — 0,5; *2* — 0,2; *3* — 0,1.

где п — число электронов (табл. 1).

Одноэлектронная стадия, являющаяся лимитирующей, может быть связана с окислением адсорбционного комплекса на поверхности электрода.

Таблица 1

Характеристики циклических вольтамперометрических кривых и кинетические параметры процессов формирования оксидных пленок на некоторых переходных металлах в 0,1 М перхлоратных растворах насыщенных спиртов (V = 0,5 B/c)

Me	R	n	$_{\Delta}E_{\pi}, \mathbf{B}$	β'	<i>q</i> , Кл	$K_{s} \cdot 10^{-6}$	B _K	
Zr	Met	1,01	0,057	0,182	8,5	6,582		
	Et	1,03	0,056	0,206	4,5	3,941	2,4	
	Pr	1,00	0,058	0,220	3,5	3,273		
	But	1,01	0,057	0,253	2,5	2,693		
Cr	Met	1,03	0,056	0,082	18,0	11,013	- 5,3	
	Et	1,03	0,056	0,103	6,7	5,148		
	Pr	1,05	0,055	0,105	6,0	4,700		
	But	1,10	0,053	0,110	4,0	3,284		
Мо	Met	1,01	0,057	0,093	19,3	10,964	4,5	
	Et	1,00	0,058	0,100	11,2	6,841		
	Pr	1,03	0,056	0,124	8,0	6,059		
	But	1,03	0,056	0,129	6,9	5,437		
W	Met	1,02	0,057	0,163	8,1	8,588	2,7	
	Et	1,00	0,058	0,200	4,5	5,855		
	Pr	1,00	0,058	0,200	4,0	5,726		
	But	1,01	0,057	0,253	3,0	4,939		

Отсутствие зависимости ${}_{\Delta}E_n$ от скорости развертки потенциала приводит к выводу о незначительном количестве адсорбированного продукта на поверхности электрода ко времени, соответствующему $E_{_{\kappa p}}$, незначительном влиянии диффузии на процесс окисления при $E < E_{_{\kappa p}}$ и малых толщинах пленки [4].

Последняя область, отвечающая потенциалам $E > E_{\kappa p}$, характеризуется существенной необратимостью процесса, сглаживанием анодного пика и отсутствием пика на кривой обратного хода. Скорость развертки потенциала не отражается на величине и положении пика в данной области, что связано, по-видимому, с переходом к неэлектрохимическим взаимодействиям поверхности электрода с компонентами раствора.

Наличие нескольких пиков на ЦВА может свидетельствовать как о сложности и многостадийности процесса формирования пленки, так и о многофазности строящегося поверхностного слоя.

Рис. 2. Зависимость от логарифма скорости развертки потенциала: a — потенциала, В; δ — логарифма максимального тока i_n для молибдена в 0,1 М перхлоратных растворах спиртов: 1 — метанола; 2 — этанола; 3 — пропанола, 4 — вутанола.

Скорость развертки потенциала влияет на положение пиков в обратимых областях ЦВА, на величину пиков и площади под пиком, соответствующей количеству электричества, затраченного на окисление во время прямого хода и на восстановление во время обратного хода кривой. Максимального значения E_{na} достигает при скорости развертки 0,5 В/с. Увеличение скорости развертки приводит к смещению пиков в область более положительных потенциалов для всех изученных металлов.

Площадь под пиком, характеризующая количество электричества, затраченное на процесс (q), увеличивается с ростом скорости развертки потенциала. Переход от метанола к бутанолу приводит к снижению q для всех изученных металлов (табл. 1), подтверждая участие молекул растворителя в формировании поверхностного слоя. При этом, чем больше длина углеводородного радикала R в молекуле спирта, тем быстрее формируется барьерный слой у поверхности электрода и тем меньшее количество электричества затрачивается на его формирование и отрицательнее потенциал пика, отвечающего формированию поверхностногостоя.

Зависимости E_{na} — $\lg V$ и $\lg i_n$ — $\lg V$ линейны (рис. 2 *a*, δ). Это позволило рассчитать коэффициенты переноса β' для анодного процесса [5]. С переходом от метанола к бутанолу β' увеличиваются для всех изученных металлов (табл. 1). Это подтверждает участие ионов металла в формировании координационных структур с участием диполей растворителя, обеспечивающих пассивационные процессы на поверхности электродов.

Зависимость максимальной плотности тока i_n от скорости развертки потенциала линейна для всех изученных систем, но не выходит из начала координат, что подтверждает предположение о стадийности процесса или наличии в механизме неэлектрохимической стадии [5].

Результаты цикловольтамперометрических измерений позволили рассчитать константу скорости электродного процесса K_s . Порядок полученных величин (10⁻⁶) соответствует литературным данным [5] и свидетельствует о возможности электронного переноса по механизму туннелирования [6] при создании стабильных мостиковых ассоциатов с разделенными органическими фрагментами донорными и акцепторными центрами взаимодействия [1]. На это же указывает зависимость константы скорости K_s от природы спирта для всех исследованных металлов (табл. 1). Линейность зависимос-

Рис. 3. Зависимость константы скорости от индукционной константы заместителя в молекуле спирта для: *1* — Zr, 2 — Cr, 3 — Mo, 4 — W в 0,1 М перхлоратных растворах.

тей K_s , σ^* (рис. 3) и влияние природы металла на наклон данной зависимости e_κ (табл. 1) подтверждают наличие электронной составляющей в переносе электричества и формировании пленки.

Замедление роста пленки, описываемое параметром *в_к*, с изменением природы металла происходит в систематическом переходе по подгруппе периодической системы, при котором с точки зрения зонной теории увеличивается ширина запрещенной зоны и уменьшается вероятность туннелирования электронов. С этим, по-видимому, связано уменьшение *в_к* в ряду Cr-Mo-W, V-Nb-Ta, Ti-Zr.

Количество циклов незначительно отражается на форме кривых. Начиная с десятого цикла, форма цикловольтамперограммы становится постоянной, пики не выраженными вследствие образования устойчивых соединений, предположительно, оксидов изученных металлов в высшей степени окисления. Это подтверждают результаты исследований, проведенных методом атомно-абсорбционной спектроскопии (ААС).

Расчеты по данным ААС показали, что пассивирующий слой на хромовом электроде в 0,1 М перхлоратном растворе этанола при потенциале E = + 0,45 В (пассивная область) содержит хром с валентностью 4,5. Дробность валентности, очевидно, связана с дефектностью структуры пленки. При смещении потенциала в положительную сторону до E = +0,8 В (область транспассивности) методом ААС обнаруживается шестивалентный хром, и вероятно образование на поверхности металла высшего оксида. Для хрома в 0,1 М перхлоратных растворах остальных насыщенных спиртов изученной серии получены аналогичные результаты.

Измерения емкости электродов из Ti, Zr, V, Nb, Та, Cr, Mo, W в перхлоратных растворах насыщенных спиртов показали, что с потенциалом емкость электродов меняется немонотонно. Зависимости С, Е имеют минимумы в области критического потенциала Е_{ир}. Данный экстремум смещается в сторону отрицательных значений потенциала с ростом абсолютной величины σ^* по ряду спиртов метанол — бутанол для всех изученных металлов. Минимум емкости соответствует максимальной адсорбции спирта. Устойчивое пассивное состояние, характерное для $E > E_{_{KD}}$, связано, в таком случае, с достаточно сильными сорбционными взаимодействиями в системах, приводящими к созданию пассивного слоя на поверхности электрода. Наиболее низкие значения емкости и наиболее широкая область минимума кривой С, Е характерны для тантала, что позволяет характеризовать состав пленок на Та в спиртовых растворах как близкий к стехиометрическому, обеспечивающий устойчивое пассивное состояние в наиболее широком интервале потенциалов [8—13].

Результаты емкостных измерений позволили оценить концентрацию дефектов в истощенном поверхностном слое. Для этого на линейном участке *C*⁻², Е-зависимостей были определены значения dC^{-2}

 $\frac{dC}{dE}$ для всех исследуемых систем. Рассчитанная по формуле:

$$N_D = 2 \left[e \varepsilon \varepsilon_o \left(\frac{d(C^{-2})}{dE} \right)^{-1}, \qquad (2)$$

концентрация дефектов имеет порядок величины $10^{19} \div 10^{20}$ (табл. 2), что согласуется с литературными данными [14—17]. Результаты емкостных, цикловольтамперометрических и атомно-абсорбционных измерений свидетельствуют о снижении концентрации донорных дефектов в пленке от границы с металлом к границе с электролитом. По-видимому, донорные дефекты формируются с участием обнаруженных ионов низшей валентности, мигрирующих к границе с раствором, что подтверждается влиянием природы металла на величину $N_{\rm p}$ (табл. 2).

Таблица 2

Концентрации дефектов кристаллических решеток N_D для ряда переходных металлов в 0,1 М перхлоратных растворах спиртов

Me	R	$N_{_D} \cdot 10^{20}$	Me	R	$N_{_D} \cdot 10^{20}$
	Met	1,232		Met	4,5899
7.	Et	0,7710	Ма	Et	4,0196
	Pr 0,0850		Pr	3,8876	
	But	0,0670		But	1,0113
	Met	14,3752		Met	4,2280
Ca	Et	9,0399	W	Et	3,8571
	Pr	8,5299	, w	Pr	1,7582
	But	8,5361		But	1,5153

Приведенный в работе [8] профиль концентраций дефектов по толщине анодной пленки определяет толщину пленки при концентрации 10^{20} см⁻³ на уровне монослоя, $N_D = 10^{-16}$ см⁻³ соответствует расстоянию 300 нм от границы с метанолом. В связи с этим выявленное в нашей работе уменьшение N_D с переходом от метанола к бутанолу может характеризовать увеличение углеводородного радикала в молекуле спирта для всех изученных металлов.

ЗАКЛЮЧЕНИЕ

Описанные экспериментальные факты позволяют обсуждать механизм образования пленок на переходных металлах при анодной поляризации в спиртовых и аналогичных им средах. Начальной стадией, по-видимому, является адсорбция растворителя на поверхности металла, вызывающая на ЦВА первый обратимый пик.

Активными центрами поверхности могут служить дефекты кристаллической решетки металла. Далее формируется поверхностный комплекс с ионами металла промежуточной валентности, способных к выходу в раствор в результате десорбции. Процесс является обратимым, одноэлектронным и замедленным (константы скорости очень низкие).

В результате усиления адсорбционных взаимодействий растет тонкий слой оксида промежуточной валентности, определяющий второй обратимый пик на ЦВА. Развитие дефектности слоя и наращивание анодной поляризации приводит к достраиванию на поверхности слоя оксида, содержащего металл в высшей степени окисления, и выходу металла из состояния пассивности в результате нарушения целостности пассивирующего слоя (металл в высшей степени окисления обнаруживается в растворе).

На основании этих опытных данных можно предположить, что анодное окисление изучаемых металлов в спиртовых средах происходит по одному из механизмов:

(1) Me + ROH
$$\leftrightarrow$$
 Me(ROH)_{aac}
Me(ROH)_{aac} \leftrightarrow Me(OR⁻)_{aac} + H⁺
Me(OR⁻)_{aac} \leftrightarrow Me(OR)_{aac} + e
(MeOR)_{aac} + Me(ROH)_{aac} $\leftrightarrow \left[(MeOR) \cdot Me(ROH) \right]_{aac}$

MeOR · Me(ROH) \rightarrow MeOR⁺ + e — лимитирующая стадия

$$MeOR^{+} \leftrightarrow MeOR^{2+} + e$$
$$MeOR^{2+} \leftrightarrow MeOR^{3+} + e$$
$$MeOR^{3+} + H^{+} \rightarrow Me^{4+} + ROH$$
[3]

или (2) Me+ROH \leftrightarrow [Me(ROH)]⁺_{anc} + e

 $2 \left[\text{Me(ROH)} \right]_{\text{anc}}^{+} \rightarrow 2 \left(\text{MeOH} \right)_{\text{anc}} + R - R + 2e$

 $(MeOH)_{aac} \rightarrow (MeOH)^{+}_{aac} + e$ — лимитирующая стадия

$$(MeOH)^{+}_{aac} \rightarrow (MeOH)^{2+}_{aac} + e$$
$$(MeOH)^{2+}_{aac} \leftrightarrow (MeOH)^{3+}_{aac} + e$$

с последующей десорбцией частицы:

 $\left[\operatorname{Me}(\operatorname{ROH})\right]_{\operatorname{anc}}^{4+}$ + $(n-1)\operatorname{ROH} \leftrightarrow \left[\operatorname{Me}(\operatorname{ROH})_{n}^{4+}\right]_{0}$ — неэлектрохимическая стадия и диффузией ее в раствор:

$$\left[\operatorname{Me}(\operatorname{ROH})_{n}^{4+}\right]_{0} \rightarrow \left[\operatorname{Me}(\operatorname{ROH})_{n}^{4+}\right]$$
 [4]

На поверхности:

$$(\text{MeOH})_{a,a,c}^{3+} \xleftarrow{\text{H}_{2}\text{O}} \left[\text{Me(OH)}_{2}^{2+} \right]_{a,a,c} + \text{H}^{+} + e \\ \left[\text{Me(OH)}_{2}^{2+} \right]_{a,a,c} \leftrightarrow \text{MeO}_{2} + 2\text{H}^{+}$$
[5]

Полученные данные свидетельствуют об адсорбционной природе формирующегося поверхностного слоя и стадийности процесса образования пленок на изученных металлах при анодной поляризации. ИССЛЕДОВАНИЕ АНОДНОГО ПОВЕДЕНИЯ ПЕРЕХОДНЫХ МЕТАЛЛОВ В СПИРТОВЫХ СРЕДАХ...

СПИСОК ЛИТЕРАТУРЫ

1. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Химия, 2001. 624 с.

2. Камкин А.Н., Давыдов А.Д., Цзу-Гу Дин, Маричев В.А. // Электрохимия. 1999. Т. 35. № 5. С. 587—596.

3. *Галюс 3*. Теоретические основы электрохимического анализа. М.: Мир, 1974.

4. Курдакова В.В., Кондратьев В.В., Левин О.В., Малеев В.В. // Электрохимия. 2002. Т. 38. № 11. С. 1319—1326.

5. Дубова Н.М., Каплин А.А. Стромберг А.Г. // Электрохимия. 1983. т. 19. № 12. С. 1688—1692.

6. Кулак А.И. Электрохимия полупроводниковых гетероструктур. Минск: Изд. Университетское, 1986. 191 с.

7. Лилин С.А., Григорьев В.П., Оше Е.К., Нечаева О.Н., Попова А.А. // Электрохимия. 1996. т. 32. № 12. С. 1461—1465.

8. *Модестов А.Д., Давыдов А.Д.* // Электрохимия. 2000. Т. 36. № 10. С. 1284—1292.

9. Gomes W.P., Gardon F. // Progress Surf. Sci. 1982. V. 12. P. 155—215.

10. *Memming R.* // J. Electroanal. Chem. 1979. V. 11. P. 1–84.

11. *Берман Л.С.* Емкостные методы исследования полупроводников. Л.: Наука, 1968. 179 с.

12. *Мямлин В.А., Плесков Ю.В.* Электрохимия полупроводников. М.: Наука, 1965. 338 с.

13. Gerischer H. // Z. Phys. Chem. N.F. 1961. Bd. 27. S. 48—79.

14. *Delnick F.M., Hackerman N. //* Passivity metals Proc. 4th Int. Symp. Passivity. Warrenton, 1977. Princeton. N.J. 1978. P. 116—133.

15. *Delnick F.M., Hackerman N.* // J. Electrochem. Soc. 1976. V. 126. № 5. P. 732—741.

16. *Stimming V., Schultze J.W.* // Ber. Bunsenges. Phys. Chem. 1976. Bd. 80. № 12. S. 1297—1302.

17. Григорьев В.П., Нечаева О.Н., Попова А.А. // Электрохимия. 1992. Т. 28. № 11. С. 1644

18. *Bacarella A.L., Sutton A.L. //* J.E1ectrochem. Soc. 1975. V. 122. P. 11–18.

19. *Киш Л.* // Электрохимия. 2000. Т. 36. № 10. С.1191—1196.

20. Цыганкова Л.Е., Вигдорович В.И., Корнеева Т.В. // Тез. докл. VI Всес. конф. по электрохимии. Москва, 1982. Т. 3. С. 155.