УДК 537.312.62:541.123.3:546.562

ОСОБЕННОСТИ КРИСТАЛЛИЗАЦИИ КУПРАТА ИТТРИЯ БАРИЯ В СИСТЕМАХ Y,BaCuO₅-BaCuO₇-CuO И Y,Cu,O₅-BaCuO₇

© 2007 Н. А. Каланда*, Л. И. Гурский**, В. М. Трухан*, В. В. Паньков***, В. А. Кецко****

- * Объединенный институт физики твердого тела и полупроводников НАН Беларуси,
- ** Белорусский государственный университет информатики и радиоэлектроники, *** Белорусский государственный университет,

**** Институт общей и неорганической химии им. Н. С. Курнакова РАН Поступила в редакцию 03.07.07

Изучена скорость роста $YBa_2Cu_3O_{7-\delta}$ в системах Y_2BaCuO_5 -BaCuO $_2$ -CuO, $Y_2Cu_2O_5$ -BaCuO $_2$ в интервале температур 1240—1270 К с использование прекурсоров $Y_2Cu_2O_5$ и Y_2BaCuO_5 со средним диаметром зерен 10 мкм и 1 мм. Рассчитана энергия активации роста $YBa_2Cu_3O_{7-\delta}$ в системах Y_2BaCuO_5 -BaCuO $_2$ -CuO и $Y_2Cu_2O_5$ -BaCuO $_2$ при различных размерах зерен в прекурсорах Y_2BaCuO_5 и $Y_2Cu_2O_5$. Предложен и обоснован механизм кристаллизации $YBa_2Cu_3O_{7-\delta}$ в системах Y_2BaCuO_5 -BaCuO $_2$ -CuO и $Y_2Cu_2O_5$ -BaCuO $_3$.

ВВЕДЕНИЕ

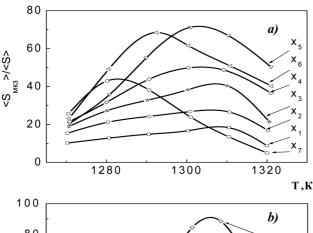
Получение качественной керамики и структурносовершенных монокристаллов купрата иттриябария (YBa,Cu,O,,,) затруднено вследствие его перитектического характера кристаллизации, активного взаимодействия раствора-расплава с материалом технологической оснастки, недостатком кислорода в жидкой фазе, кристаллизацией побочных фаз и т.д. [1—3]. В связи с этим традиционные методы получения YBa₂Cu₂O_{7 5} из жидкой фазы и твердофазный синтез, при которых используются в качестве исходных реагентов простые оксиды Y2O3, ВаО и CuO, оказались малоэффективными [4, 5]. При этом отдельные реагенты, из-за различных химических свойств, не успевают полностью прореагировать и поэтому могут присутствовать в купрате иттрия бария в виде отдельных включений, что существенно ухудшает его сверхпроводящие свойства. Использование прекурсоров в исходной шихте в виде соединений, например; У ВаСиО и У Си О позволяет избежать некоторых промежуточных реакций и провести прямой синтез $YBa_2Cu_3O_{7-\delta}$ [6]. Кроме того, применение сложных оксидов влияет на комплексообразование и содержание кислорода в растворе — расплаве при росте YBa₂Cu₂O_{7 s} [4, 7]. Необходимо отметить, что скорость и механизм протекания процессов кристаллизации YBa₂Cu₃O₇₋₈ в системах Y₂BaCuO₅-BaCuO₂-CuO, Y₂Cu₂O₅-ВаСиО₂ зависит от дисперсности зерен составляющих этих систем; У,ВаСиО, и У,Си,О,. В связи с

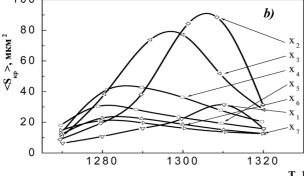
этим, для оптимизации условий выращивания монокристаллов $YBa_2Cu_3O_{7-\delta}$ особую значимость имеет изучение влияния геометрических размеров зерен прекурсоров Y_2BaCuO_5 и $Y_2Cu_2O_5$ на скорость и механизм кристаллизации $YBa_2Cu_3O_{7-\delta}$.

МЕТОДИКА ЭКСПЕРИМЕНТА

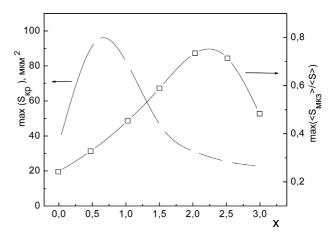
Для синтеза соединений Y₂BaCuO₅, Y₂Cu₂O₅ и BaCuO, использовались оксиды Y,O3, BaO и CuO марки "О.С.Ч.". Помол и перемешивание смеси исходных оксидов со спиртом проводились в вибромельнице в течение 3 часов. Полученная смесь сушилась при температуре 320 К и прессовалась в таблетки. Предварительный отжиг осуществляли на воздухе при 970 К (BaCuO₂) и 1070 К (Y₂BaCuO₃, $Y_2Cu_2O_5$) в течение 24 часов. Для повышения степени гомогенизации шихты использовался вторичный помол. Окончательный отжиг смеси оксидов осуществлялся при 1240 К (BaCuO₂) и 1270 К (Y₂BaCuO₅, Y₂Cu₂O₅) в течение 24 ч на воздухе. Температуру в термоустановках поддерживали с помощью высокоточного регулятора температуры РИФ-101 и контролировали Pt-Pt/Rh(10%) термопарой с точностью ±0,5 К. Особенности кристаллизации YBa, Cu, O, с участием вышеуказанных сложных оксидов изучались с использованием методов рентгенорадиометрического анализа (РРА), рентгенофазового анализа (РФА), рентгеноспектрального микроанализа, электронной и оптической микроскопии. По изменению относительной интенсивности рентгеновской линии (103) оценивалась кинетика роста купрата иттрия-бария.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ


Исследование влияния геометрических размеров зерен прекурсоров Y_2BaCuO_5 , $Y_2Cu_2O_5$ на кинетику и механизм кристаллизации $YBa_2Cu_3O_{7-\delta}$ проводилось на образцах, состоящих из трех составов:

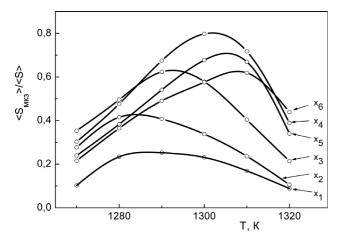

$$(I)$$
 — $Y_2BaCuO_5 + 3BaCuO_7 + 2.3CuO_7$

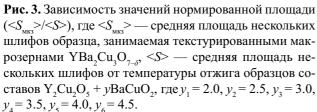
$$(II) - Y_2BaCuO_5 + 3BaCuO_7 + 0.6CuO_7$$


(III) —
$$Y_2Cu_2O_5 + 3.5BaCuO_2$$
.

Поиск оптимального состава образцов, обеспечивающих получение максимального размера текстурированных макрозерн $YBa_2Cu_3O_{7-\delta}$ и кристаллитов в них, проводился с использованием результатов фазового состава, а также анализа микроструктуры нескольких шлифов таблетки после ее синтеза в интервале температур $1270 < T_{\text{син}} < 1320 \text{ K [8]}$. Установлено, что в образцах, полученных из составов $Y_2BaCuO_5 + 3BaCuO_2 + xCuO_5$, где

Рис. 1. Зависимость значений нормированной площади ($<S_{\text{мк3}}>/<S>$), где $<S_{\text{мк3}}>$ — средняя площадь нескольких шлифов образца, занимаемая текстурированными макрозернами $YBa_2Cu_3O_{7-\delta}$, <S> — средняя площадь нескольких шлифов образца (а) и значений усредненной площади кристаллитов $YBa_2Cu_3O_{7-\delta}$ ($<S_{\text{кр}}>$, мкм²), имеющих наибольшие размеры (б) от температуры отжига образцов составов $Y_2BaCuO_5 + 3BaCuO_2 + xCuO$, где $x_1 = 0$, $x_2 = 0.5$, $x_3 = 1.0$, $x_4 = 1.5$, $x_5 = 2.0$, $x_6 = 2.5$, $x_7 = 3.0$.

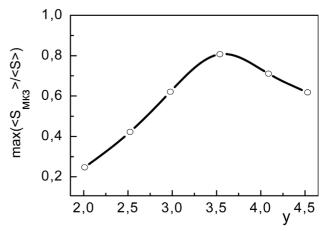

Рис. 2. Зависимость максимальных значений нормированной площади $\{max(<S_{_{\rm MK3}}>/<S>)\}$ и максимальных значений усредненной площади $(max<S_{_{\rm KP}}>$, мкм²) кристаллитов YBa $_2$ Cu $_3$ O $_{7-\delta}$ от состава образцов Y $_2$ BaCuO $_5$ + 3BaCuO $_5$ + xCuO.


 $x_1 = 0, x_2 = 0.5, x_3 = 1.0, x_4 = 1.5, x_5 = 2.0, x_6 = 2.5,$ $x_7 = 3.0$, при увеличении температуры начала синтеза до 1305 К нормированная площадь $< S_{\text{мк3}} > / < S >$, где $<S_{_{\rm MK3}}>$ — средняя площадь занимаемая текстурированными макрозернами YBa₂Cu₃O₇₋₈ снятая с нескольких шлифов образца, <S> — средняя площадь нескольких шлифов образца, увеличивается, а при дальнейшем повышении температуры до 1320 К уменьшается (рис. 1а). На основании построенной зависимости $max(<S_{MK3}>/<S>) = f(x)$ установлено, что наибольшая нормированная площадь cooтветствует cocтаву Y₂BaCuO₅ + 3BaCuO₂ + 2.3CuO (рис. 2). Оптимизация состава образцов Y_2 BaCuO₅ + 3BaCuO₂ + xCuO, в которых величина средней площади $\{<S_{_{\rm KD}}>, ({\rm мкм}^2)\}$ кристаллитов YBa₂Cu₃O₇₋₈, находящихся в текстурированных макрозернах, достигает наибольших размеров, осуществлялась по вышеописанной схеме (рис. 16, 2). В образцах, состоящих из смеси фаз Y₂Cu₂O₅ + уВаСиО, обнаружено, что наибольшие значения $max(\langle S_{MK3} \rangle / \langle S \rangle) = f(y)$, где $y_1 = 2.0$, $y_2 = 2.5$, $y_3 = 3.0$, $y_4 = 3.5, y_5 = 4.0, y_6 = 4.5$, соответствуют составу $Y_2Cu_2O_5 + 3.5BaCuO_2$ (рис. 3, 4). Следует указать, что для всех составов в образцах $Y_2Cu_2O_5 + yBaCuO_5$ после их синтеза структура текстурированных макрозерен была мелкозернистой, поэтому построение функции вида $max < S_{KD} > = f(y)$ не проводилось. Таким образом, исходя из вышеизложенного, кинетика и механизм кристаллизации YBa, Cu, O, исследовались на образцах составов:

$$(I)$$
 — $Y_2BaCuO_5 + 3BaCuO_7 + 2.3CuO_7$

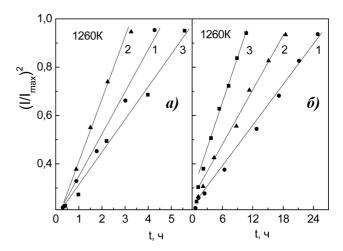
$$(II)$$
 — Y_2 BaCu O_5 + 3BaCu O_7 + 0.6Cu O_7

(III) —
$$Y_2Cu_2O_5 + 3.5BaCuO_2$$
.

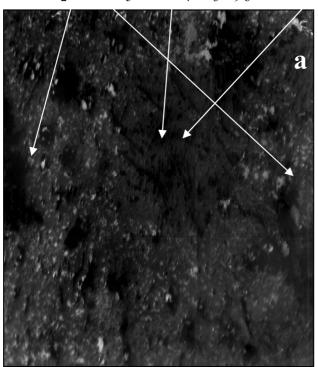


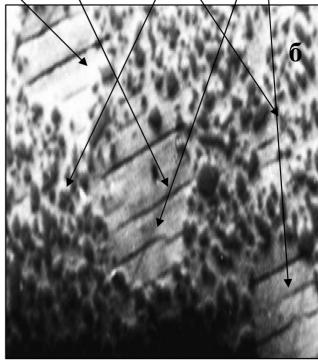
По данным изменения величины относительной интенсивности рентгеновской линии (103) установлено, что при использовании прекурсоров $Y_2Cu_2O_5$ и Y_2BaCuO_5 со средним размером зерен $d_{cp}\sim10$ мкм скорость роста $YBa_2Cu_3O_{7-\delta}$ в системах (I)—(III) хорошо описывается параболической зависимостью:

$$(I/I_{max})^2 = \kappa(t - t_0) \tag{1}$$


где κ — константа скорости роста $YBa_2Cu_3O_{7-\delta}$, I — интенсивность рефлекса (103), измеряемая через промежутки времени $\Delta t=1$ ч, I_{max} — максимальная интенсивность рефлекса (103), t — время синтеза $YBa_2Cu_3O_{7-\delta}$, t_0 — промежуток времени с начала отжига шихты и до появления в ней $YBa_2Cu_3O_{7-\delta}$ (рис. 5a). Установлено, что максимальная скорость роста $YBa_2Cu_3O_{7-\delta}$ была в системе (II). Энергии активации роста $YBa_2Cu_3O_{7-\delta}$, рассчитанные по формуле $\kappa=\kappa_0\exp(-E/RT)$, имели значения 31—54 КДж/моль для систем (I) — (III), где κ_0 — постоянная скорости роста при $t=t_0$ и R — газовая постоянная (8.31 Дж • K^{-1} • моль $^{-1}$).

Для установления причин, определяющих различные значения скорости роста $YBa_2Cu_3O_{7-\delta}$ в образцах систем (I)—(III) со средним размером зерен $d_{\rm cp}{\sim}10$ мкм Y_2BaCuO_5 и $Y_2Cu_2O_5$, рассмотрим особенности механизма кристаллизации купрата иттрия-бария в них. На основании данных локального рентгеноспектрального микроанализа закаленных образцов с 1270—1240 К установлено, что средняя концентрация иттрия ($<C_V>$) в растворе-


Рис. 4. Зависимость максимальных значений нормированной площади $\{max(<S_{\text{мк3}}>/<S>)\}$ от состава образцов $Y_2\text{Cu}_2\text{O}_5+y\text{BaCuO}_2$, где $y_1=2.0,y_2=2.5,y_3=3.0,y_4=3.5,y_5=4.0,y_6=4.5$.


расплаве не превышает 3 ат. %. Можно предположить, что $maxC_{\gamma}$ будет на границе зерен Y_2BaCuO_5 , $Y_2Cu_2O_5$ и раствора-расплава, а гетерогенное зарождение и рост $YBa_2Cu_3O_{7-\delta}$ должны происходить на поверхности зерен указанных твердых фаз [10, 11]. Однако, при исследовании микроструктуры закаленных образцов, образование $YBa_2Cu_3O_{7-\delta}$ выявлено не на поверхности зерен Y_2BaCuO_5 и $Y_2Cu_2O_5$, а в эллипсоидных областях закристаллизовавшегося раствора-расплава (рис. 6). В этом

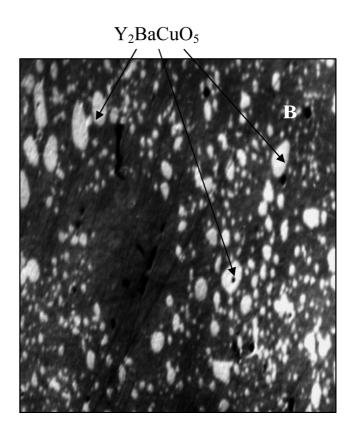


Рис. 5. Кинетические зависимости изменения (I/I_{max}), где I и I_{max} — относительная и максимальная интенсивность рентгеновской линии (103) соединения $YBa_2Cu_3O_{7-\delta}$ систем; $Y_2Cu_2O_5 + 3.5BaCuO_2$ (I), $Y_2BaCuO_5 + 3BaCuO_2 + 0.6CuO$ (2) и $Y_2BaCuO_5 + 3BaCuO_2 + 2.3CuO$ (3), с a) $d_{cp} \sim 10$ мкм, δ) $d_{cp} \sim 1$ мм.

 Y_2BaCuO_5 $YBa_4Cu_3O_{9-\delta}$ элипсоидная область Y_2BaCuQ_5 $YBa_2Cu_3O_{7-\delta}$.

Рис. 6. Эллипсоидные области закаленного раствора-расплава образцов систем $Y_2BaCuO_5 + 3BaCuO_2 + 0.6CuO$ (*a*), $Y_2BaCuO_5 + 3BaCuO_2 + 2.3CuO$ (*б*) и $Y_2Cu_2O_5 + 3.5BaCuO_2$ (*в*), где происходит зарождение и рост фазы $YBa_2Cu_3O_{7-\delta}$.

случае реакция перитектического превращения происходит по схеме:

$$Y_2BaCuO_5 + W \rightarrow W \rightarrow YBa_2Cu_3O_{7-\delta}$$

В системе (II) при аналогичных условиях, кроме У,ВаСиО, обнаружено и соединение YBa₄Cu₃O₀₋₈. Так как при кристаллизации YBa₂Cu₃O₇₋₈ уменьшается содержание Y₂BaCuO₅ и YBa₄Cu₃O₉₋₅, то схема перитектического превращения следующая:

$$YBa_{_{4}}Cu_{_{3}}O_{_{9-\delta}}+Y_{_{2}}BaCuO_{_{5}}+\mathcal{K}\rightarrow\mathcal{K}\rightarrow \mathcal{K}\rightarrow YBa_{_{2}}Cu_{_{3}}O_{_{7-\delta}}.$$

Таким образом, кристаллизация $YBa_{_{2}}Cu_{_{3}}O_{_{7-\delta}}$ в системах (I), (II) и (III) с размером зерен $d_{cn} \sim 10$ мкм прекурсоров Y_2BaCuO_5 и $Y_2Cu_2O_5$ происходит в растворе расплаве. В этом случае вследствие относительно малой величины $< C_{\rm v} > \sim 3$ ат. % в растворе-расплаве скорость роста YBa, Cu, O, в системах (I) и (III) лимитирована скоростью поступления Ү от зерен Ү, ВаСиО, к растущим зернам YBa₂Cu₂O_{7 5} через жидкость, а в системе (II) также и от зерен промежуточной фазы YBa₄Cu₃O_{9_5}.

Известно, что плотность потока кристалообразующего вещества иттрия (J_{v}) к поверхности зерен YBa₂Cu₃O_{7-δ} пропорциональна градиенту его концентрации (ΔC_{v}) в жидкой фазе, которую можно условно разделить на две области с различной концентрацией Y [3]. Первая область (ΔC_{v_1}) расположена на границе зерен Y₂BaCuO₅/Ж, а вторая (ΔC_{yy}) на границе зерен YBa, Cu, O, X. Концентрацию кристалообразующего вещества в растворерасплаве считаем постоянной (C_{y_0}). Поток вещества с единицы поверхности зерен Y, ВаСиО5, согласно первому закону Фика, описывается формулой:

$$J_{Y1} = k_1 D_{Y1} / \delta_1 \Delta C_{Y1},$$

где $D_{_{
m Y1}}$ — коэффициент химической диффузии иттрия через пограничный слой, δ_1 — толщина пограничного слоя между поверхностью зерен Y₂BaCuO₅ и условной границей, вне которой состав раствора-расплава считаем постоянным. При кристаллизации YBa₂Cu₃O₇₋₈ поток иттрия на единицу поверхности кристалла составляет:

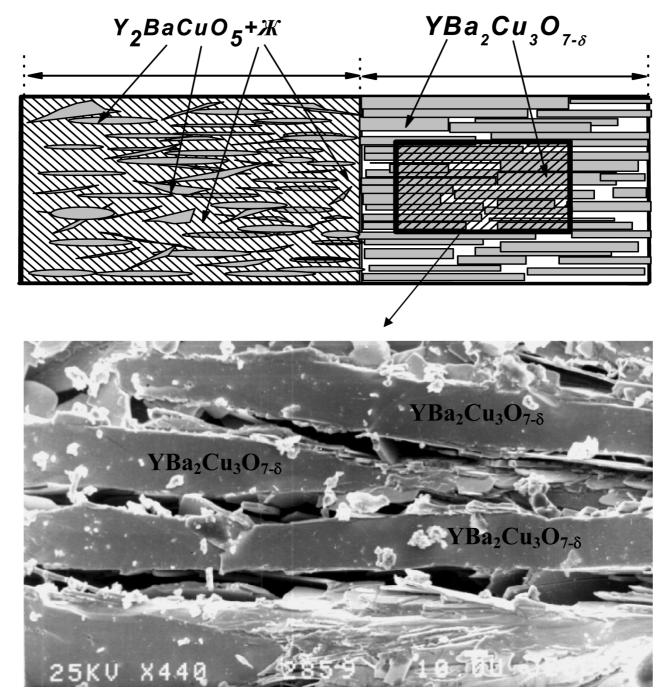
$$J_{Y2} = k_2 D_{Y2} / \delta_2 \Delta C_{Y2},$$

где $D_{_{Y2}}$ — коэффициент химической диффузии иттрия через пограничный слой, δ , — толщина пограничного слоя между поверхностью кристалла ҮВа,Си,О,, и условной границей, за которой состав раствора-расплава не изменяется. В системах (I) и (III) при квазиравновесных условиях кристаллизации YBa₂Cu₃O_{7- δ}, потоки равны J_{v_1} = J_{yy} , и уравнение скорости роста принимает вид:

$$v_{2(\text{крист.})} = v_{1(\text{разл.})} \Delta C_2 / \Delta C_1$$

где $v_{2(\text{крист.})} = kD_{2\text{Ж}}/\delta_2$ — скорость роста $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$, $v_{1(\text{разл.})} = kD_{1\text{Ж}}/\delta_1$ — скорость разложения зерен У ВаСиО₅. В системе (II) скорость роста купрата иттрия бария определяется потоками кристалообразующего вещества от зерен Y_2BaCuO_5 — (J_{Y3}) и $YBa_4Cu_3O_{q_{-\delta}}$ — (J_{v_4}) через жидкую фазу к поверхности кристаллита $YBa_2Cu_3O_{7-\delta}$. Уравнение скорости роста YBa₂Cu₃O₇₋₈ имеет вид:

$$v_{\text{(kDMCT)}} = \Delta C_2 \{ v_{3(\text{page})} / \Delta C_3 + v_{4(\text{page})} / \Delta C_4 \}$$


$$\begin{split} \nu_{_{(\text{крист.})}} &= \Delta C_{_2} \{ \nu_{_{3(\text{разл.})}} / \Delta C_{_3} + \nu_{_{4(\text{разл.})}} / \Delta C_{_4} \} \,, \\ \text{где } \nu_{_{3(\text{разл.})}}, \ \nu_{_{4(\text{разл.})}} &\longrightarrow \text{скорость разложения зерен} \\ Y_{_2} \text{BaCuO}_{_5} \ \text{и} \ Y \text{Ba}_{_4} \text{Cu}_{_3} \text{O}_{_{9-\delta}}, \ \Delta C_{_3}, \ \Delta C_{_4} &\longrightarrow \text{градиент} \end{split}$$
концентрации иттрия на границе раздела У ВаСиО / Ж и ҮВа Си О Ж. Таким образом, скорость роста $YBa_{2}Cu_{3}O_{7-\delta}$ в (I) и (III) определяется как скоростью разложения зерен Y₂BaCuO₅, а в (II) — дополнительно скоростью разложения зерен YBa₄Cu₃O₉₋₃ и обогащением жидкой фазы веществом, требуемым для кристаллизации YBa₂Cu₃O₇₋₈, так и степенью пересыщения на гаранице раздела твердая фаза — жидкость, которая при отсутствии искусственной гомогенизации раствора-расплава определяется подвижностью У в нем. Можно предположить, что наибольшая скорость роста YBa, $Cu_3O_{7-\delta}$ в системе (II) обусловлена двумя потоками кристаллообразующего вещества к поверхности кристалла. Образование и последующее разложение YBa₄Cu₃O₉₋₈ обеспечивает, на наш взгляд, химическую гомогенизацию реагентов в растворе-расплаве. В системе (III) образование и рост зерен YBa₂Cu₃O₇₋₃ происходит также, как и в (I), но при большей скорости роста, что объясняется химической гомогенизацией, обусловленной перитектической реакцией (рис. 5*a*):

$$Y_2Cu_2O_5 + \mathcal{K} \rightarrow Y_2BaCuO_5$$
.

При увеличении размеров зерен Ү,Си,О, и $\rm Y_2BaCuO_5$ в 100 раз с $d_{\rm cp}{\sim}$ 10 мкм $d_{\rm cp}{\sim}$ 1 мм, изменение скорости роста $\rm YBa_2Cu_3O_{7-\delta}$ в системах (I)—(III) можно разделить на две стадии, которые описываются квазилинейным и параболическим зависимостями (рис. 56). Наибольшая скорость роста YBa₂Cu₃O₇₋₈ наблюдалась в системе (I), а значения энергии активации роста купрата иттриябария увеличивались от 97—115 КДж/моль до 183—211 КДж/моль на первой и второй стадиях соответственно. Для объяснения данных особенностей был выполнен следующий эксперимент. Поликристаллические таблетки У ВаСиО помещали в жидкость составов $\mathcal{K}(BaCu_{18}O_z)$, $\mathcal{K}(BaCu_{12}O_z)$, а Y₂Cu₂O₅ в Ж(ВаСuO₂) при 1240—1290 К и после

выдержки в течение 48 ч проводили закалку. С помощью рентгеноспектрального и рентгенорадиометрического анализов установлено, что при 1240—1270 К иттрий в жидкой фазе отсутствовал, а при 1270—1290 К обнаружен вблизи таблеток Y_2 BaCuO $_5$ и Y_2 Cu $_2$ O $_5$. Согласно данным микроструктурного анализа на таблетке Y_2 BaCuO $_5$, закаленной из расплава Ж(BaCu $_{1.8}$ O $_2$) от температур 1240—1270 К, обнаружен текстурированный слой YBa $_2$ Cu $_3$ O $_{7-\delta}$

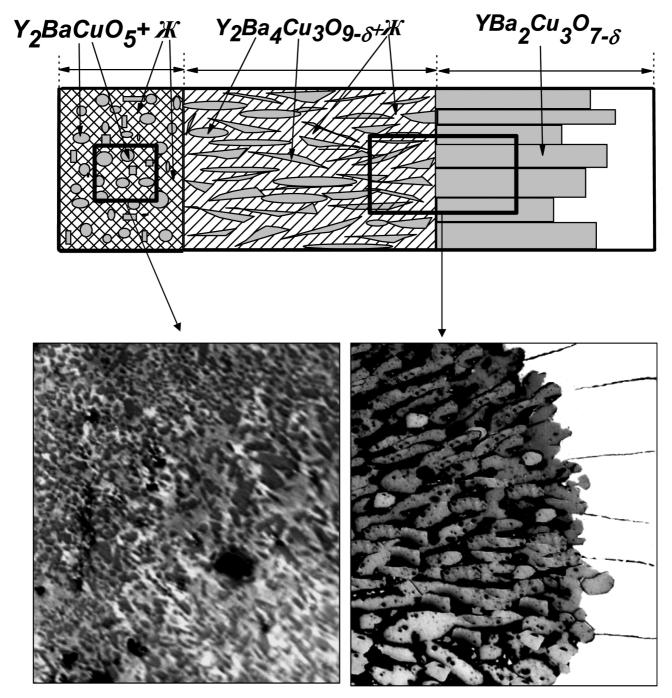
(рис. 7). При использовании Ж(ВаСи $_{1.2}$ О $_z$), на таблетке Y $_z$ ВаСиО $_5$ первоначально образовывался текстурированный слой YВа $_4$ Си $_3$ О $_{9-\delta}$, а затем — YВа $_2$ Си $_3$ О $_{7-\delta}$ (рис. 8). Кристаллиты YВа $_2$ Си $_3$ О $_{7-\delta}$ и YВа $_4$ Си $_3$ О $_{9-\delta}$ росли перпендикулярно торцевой поверхности образца. Для таблетки Y $_2$ Си $_2$ О $_5$, помещенной в расплав ВаСиО $_z$ при 1240—1270 К, установлена последовательность кристаллизации слоев Y $_2$ Си $_2$ О $_5$ /Y $_2$ ВаСиО $_5$ / YВа $_2$ Си $_3$ О $_{7-\delta}$ / Ж (рис. 9).

Рис. 7. Схематическое изображение диффузионных слоев, синтезированных в системе $Y_2BaCuO_5 + \mathcal{K}(BaCu_{3,3}O_2)$ при 1260 К в течение 48 ч и микроструктура отдельных участков слоев.

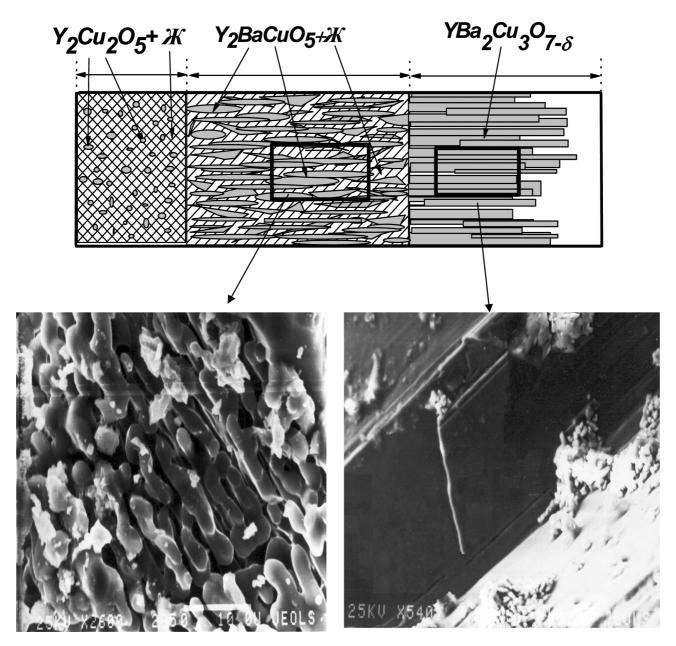
ЗАКЛЮЧЕНИЕ

Для изучения кинетики и механизма кристаллизации $YBa_2Cu_3O_{7-\delta}$ с учетом величины нормированной площади текстурированных макрозерен и средней площади кристаллитов $YBa_2Cu_3O_{7-\delta}$ были выбраны три системы составов:

Y₂BaCuO₅ + 3BaCuO₂ + 2.3CuO, Y₂BaCuO₅ + 3BaCuO₂ + 0.6CuO, Y₂Cu₂O₅ + 3.5BaCuO₂ с учетом размеров зерен прекурсоров ${
m Y_2BaCuO_5}$ и ${
m Y_2Cu_2O_5}$ ($d_{
m cp}\sim 10$ мкм, $d_{
m cp}\sim 1$ мм).


При анализе скорости роста купрата иттриябария в системах:

 $Y_2BaCuO_5 + 3BaCuO_7 + 2.3CuO_7$


 Y_2^2 BaCuO₅ + 3BaCuO₂ + 0.6CuO,

 $Y_2Cu_2O_5 + 3.5BaCuO_2$

в которых размер зерен твердых фаз ${
m Y_2BaCuO_5}$ и ${
m Y_2Cu_2O_5}$ соответствовал $d_{
m cp}\sim 10$ мкм, установлено,

Рис. 8. Схематическое изображение диффузионных слоев, синтезированных в системе $Y_2BaCuO_5 + \mathcal{K}(BaCu_{1.6}O_2)$ при 1260 К в течение 48 ч и микроструктура отдельных участков слоев.

Рис. 9. Схематическое изображение диффузионных слоев, синтезированных в системе $Y_2Cu_2O_5 + \mathcal{K}(BaCuO_z)$ при 1260 К в течение 48 ч, и микроструктура отдельных участков слоев.

что наибольшая скорость роста $YBa_2Cu_3O_{7-\delta}$ имеет место в $Y_2BaCuO_5+3BaCuO_2+0.6CuO$, обусловленная, на наш взгляд, двумя потоками кристаллообразующего вещества иттрия от зерен $YBa_4Cu_3O_{9-\delta}$ и Y_2BaCuO_5 к поверхности растущего кристаллита $YBa_2Cu_3O_{7-\delta}$ и химической гомогенизацией реагентов.

При увеличении размера зерен твердых фаз Y_2BaCuO_5 и $Y_2Cu_2O_5$ до $d_{cp}\sim 1$ мм, наибольшая скорость роста $YBa_2Cu_3O_{7-\delta}$ наблюдалась в системе $Y_2BaCuO_5 + 3BaCuO_2 + 2.3CuO$, так как лимитиру-

ющей стадией скорости роста $YBa_2Cu_3O_{7-\delta}$ является взаимная диффузия реагентов через слой твердой фазы $YBa_2Cu_3O_{7-\delta}$, тогда как для систем $Y_2BaCuO_5 + 3BaCuO_2 + 0.6CuO$ и $Y_2Cu_2O_5 + 3.5BaCuO_2$ взаимная диффузия реагентов происходит через слои твердых фаз $Y_2BaCuO_5/YBa_4Cu_3O_{9-\delta}/YBa_2Cu_3O_{7-\delta}/Ж$ и $Y_2BaCuO_5/YBa_2Cu_3O_{7-\delta}/Ж$ соответственно.

СПИСОК ЛИТЕРАТУРЫ

1. Yasunao O., Masashi H., Humihiko T. Kinetic analysis on growth of oxide superconductor crystal YBa $_2$ Cu $_3$ O $_x$ // J. of crystal Growth. 1994. V. 143. P. 200—205.

ОСОБЕННОСТИ КРИСТАЛЛИЗАЦИИ КУПРАТА ИТТРИЯ БАРИЯ В СИСТЕМАХ...

- 2. *Dico P., Takebayashi S. Murakami M.* Origin of subgrain formation in melt-grown Y-Ba-Cu-O bulks // Physica C. 1998. V. 297. P. 216—222.
- 3. Y. Shiohara, A. Endo. Crystal growth of bulk high- T_c superconducting oxide materials // Materials Science and Engineering, 1997. V. 19. P. 1—86.
- 4. *С.Р. Ли, Н.Н. Олейников, Е.А. Гудилин*. Проблемы и перспективы развития методов получения ВТСП материалов из расплава // Неорганические материалы. 1993. Т. 29. № 1. С. 3—17.
- 5. Aristianti M.M., Barus, Taylor A.T. Quench study investigation of the peritectic reaction as a function of crystallite size in $YBa_2Cu_3O_{7-\delta}$ // Physica C. 1998. V. 297. P. 211—214.
- 6. *Chigareva O.G.*, *Mikirticheva G.A.*, *Grebenschikov V.I.* Sequence of formation during solid-state synthesis in the Y₂O₃-BaO-CuO system // Mat. Ress. Bull. 1990. V. 25. P. 1435—1442.

- 7. Ryelandt L., Schewebach A., Willot I. and et. al., Reactive Growth of $YBa_2Cu_3O_{7-\delta}$ layers on Y_2BaCuO_5 substratees // J. of Allous and Compaunds, 1993. No 195. P. 227—230.
- 8. *Каланда Н.А.*, *Трухан В.М.*, *Кецко В.А*. Выращивание монокристаллов $YBa_2Cu_3O_{7-\delta}$ в системах Y_2BaCuO_5 $x"Ba_3Cu_5O_8"$ и Y_2BaCuO_5 –{"Ba_3Cu_5O_8" + $xBaCuO_2$ } // Инженерная физика. 2002. № 3. С. 39—43.
- 9. Mari-Ann Einarsrud, Anne Marie Mardal Moe, Stein Yulsrud. Growth ahd characterisation of YBa₂Cu₃O_{7-x} high T_c superconducting crystals // J. of crystal Growth. 1997. V. 182. P. 363—374.
- 10. *Alarco J.A.*, *Olsson E*. Microstructural characterization of quenched melt-textured YBa₂Cu₃O_{7- δ} materials // J. Mater. Res. 1997. V. 12. No. 3. P. 624—635.
- 11. Yuichi Nakamura, Tsuyoshi Kawase, Teruo Izumi, Kiyoshi Murata, Yuh Shioharaa. Crystal growth of ReBa₂Cu₃O_x superconductive oxides from semi-solid melt // J. of crystal Growth. 2001. V. 229. P. 369—373.