УДК 537.312.62:541.123.3:546.562

ОСОБЕННОСТИ КРИСТАЛЛИЗАЦИИ КУПРАТА ИТТРИЯ БАРИЯ В СИСТЕМАХ Y₂BaCuO₅-BaCuO₂-CuO И Y₂Cu₂O₅-BaCuO₂

© 2007 Н. А. Каланда*, Л. И. Гурский**, В. М. Трухан*, В. В. Паньков***, В. А. Кецко****

* Объединенный институт физики твердого тела и полупроводников НАН Беларуси,

** Белорусский государственный университет информатики и радиоэлектроники,

*** Белорусский государственный университет,

**** Институт общей и неорганической химии им. Н. С. Курнакова РАН

Поступила в редакцию 03.07.07

Изучена скорость роста YBa₂Cu₃O_{7- δ} в системах Y₂BaCuO₅-BaCuO₂-CuO, Y₂Cu₂O₅-BaCuO₂ в интервале температур 1240—1270 К с использование прекурсоров Y₂Cu₂O₅ и Y₂BaCuO₅ со средним диаметром зерен 10 мкм и 1 мм. Рассчитана энергия активации роста YBa₂Cu₃O_{7- δ} в системах Y₂BaCuO₅-BaCuO₂-CuO и Y₂Cu₂O₅-BaCuO₂ при различных размерах зерен в прекурсорах Y₂BaCuO₅ и Y₂Cu₂O₅. Предложен и обоснован механизм кристаллизации YBa₂Cu₃O_{7- δ} в системах Y₂BaCuO₅-BaCuO₂-CuO и Y₂Cu₂O₅-BaCuO₂.

введение

Получение качественной керамики и структурносовершенных монокристаллов купрата иттриябария (YBa₂Cu₃O₇₋₅) затруднено вследствие его перитектического характера кристаллизации, активного взаимодействия раствора-расплава с материалом технологической оснастки, недостатком кислорода в жидкой фазе, кристаллизацией побочных фаз и т.д. [1-3]. В связи с этим традиционные методы получения YBa₂Cu₂O_{7 в} из жидкой фазы и твердофазный синтез, при которых используются в качестве исходных реагентов простые оксиды У₂O₃, BaO и CuO, оказались малоэффективными [4, 5]. При этом отдельные реагенты, из-за различных химических свойств, не успевают полностью прореагировать и поэтому могут присутствовать в купрате иттрия бария в виде отдельных включений, что существенно ухудшает его сверхпроводящие свойства. Использование прекурсоров в исходной шихте в виде соединений, например; Y₂BaCuO₅ и Y₂Cu₂O₅ позволяет избежать некоторых промежуточных реакций и провести прямой синтез YBa₂Cu₃O_{7-δ}[6]. Кроме того, применение сложных оксидов влияет на комплексообразование и содержание кислорода в растворе — расплаве при росте $YBa_2Cu_2O_{7,8}$ [4, 7]. Необходимо отметить, что скорость и механизм протекания процессов кристаллизации YBa₂Cu₃O₇₋₅ в системах Y₂BaCuO₅-BaCuO₂-CuO, Y₂Cu₂O₅-ВаСиО, зависит от дисперсности зерен составляющих этих систем; Y₂BaCuO₅ и Y₂Cu₂O₅. В связи с

этим, для оптимизации условий выращивания монокристаллов YBa₂Cu₃O_{7-δ} особую значимость имеет изучение влияния геометрических размеров зерен прекурсоров Y₂BaCuO₅ и Y₂Cu₂O₅ на скорость и механизм кристаллизации YBa₂Cu₃O_{7-δ}.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для синтеза соединений Y₂BaCuO₅, Y₂Cu₂O₅ и ВаСиО, использовались оксиды Y2O3, BaO и CuO марки "О.С.Ч.". Помол и перемешивание смеси исходных оксидов со спиртом проводились в вибромельнице в течение 3 часов. Полученная смесь сушилась при температуре 320 К и прессовалась в таблетки. Предварительный отжиг осуществляли на воздухе при 970 К (BaCuO₂) и 1070 К (Y₂BaCuO₅, Y₂Cu₂O₅) в течение 24 часов. Для повышения степени гомогенизации шихты использовался вторичный помол. Окончательный отжиг смеси оксидов осуществлялся при 1240 К (BaCuO₂) и 1270 К (Y₂BaCuO₅, Y₂Cu₂O₅) в течение 24 ч на воздухе. Температуру в термоустановках поддерживали с помощью высокоточного регулятора температуры РИФ-101 и контролировали Pt-Pt/Rh(10%) термопарой с точностью ±0,5 К. Особенности кристаллизации YBa₂Cu₃O_{7-δ} с участием вышеуказанных сложных оксидов изучались с использованием методов рентгенорадиометрического анализа (РРА), рентгенофазового анализа (РФА), рентгеноспектрального микроанализа, электронной и оптической микроскопии. По изменению относительной интенсивности рентгеновской линии (103) оценивалась кинетика роста купрата иттрия-бария.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследование влияния геометрических размеров зерен прекурсоров Y_2BaCuO_5 , $Y_2Cu_2O_5$ на кинетику и механизм кристаллизации $YBa_2Cu_3O_{7-\delta}$ проводилось на образцах, состоящих из трех составов:

- (I) $Y_2BaCuO_5 + 3BaCuO_2 + 2.3CuO$, (II) — $Y_2BaCuO_5 + 3BaCuO_2 + 0.6CuO$,
- $(III) Y_2Cu_2O_5 + 3.5BaCuO_2.$

Поиск оптимального состава образцов, обеспечивающих получение максимального размера текстурированных макрозерн YBa₂Cu₃O_{7-δ} и кристаллитов в них, проводился с использованием результатов фазового состава, а также анализа микроструктуры нескольких шлифов таблетки после ее синтеза в интервале температур 1270 < $T_{cин}$ < 1320 K [8]. Установлено, что в образцах, полученных из составов Y₂BaCuO₅ + 3BaCuO₇ + xCuO, где

Рис. 1. Зависимость значений нормированной площади ($\langle S_{_{MK3}} \rangle / \langle S \rangle$), где $\langle S_{_{MK3}} \rangle$ — средняя площадь нескольких шлифов образца, занимаемая текстурированными макрозернами YBa₂Cu₃O_{7- δ}, $\langle S \rangle$ — средняя площадь нескольких шлифов образца (а) и значений усредненной площади кристаллитов YBa₂Cu₃O_{7- δ} ($\langle S_{_{KP}} \rangle$, мкм²), имеющих наибольшие размеры (б) от температуры отжига образцов составов Y₂BaCuO₅ + 3BaCuO₂ + *x*CuO, где $x_1 = 0, x_2 = 0.5, x_3 = 1.0, x_4 = 1.5, x_5 = 2.0, x_6 = 2.5, x_7 = 3.0.$

Рис. 2. Зависимость максимальных значений нормированной площади $\{max(<S_{MK3}>/<S>)\}$ и максимальных значений усредненной площади $(max<S_{KP}>, MKM^2)$ кристаллитов YBa₂Cu₃O_{7- δ} от состава образцов Y₂BaCuO₅ + 3BaCuO₅ + xCuO.

 $x_1 = 0, x_2 = 0.5, x_3 = 1.0, x_4 = 1.5, x_5 = 2.0, x_6 = 2.5,$ $x_7 = 3.0$, при увеличении температуры начала синтеза до 1305 К нормированная площадь $<\!\!S_{MK3}\!>\!\!/<\!\!S\!\!>$, где $<\!\!S_{\rm\scriptscriptstyle MK3}\!\!>$ — средняя площадь занимаемая текстурированными макрозернами YBa₂Cu₃O₇₋₄ снятая с нескольких шлифов образца, <S> — средняя площадь нескольких шлифов образца, увеличивается, а при дальнейшем повышении температуры до 1320 К уменьшается (рис. 1а). На основании построенной зависимости $max(<S_{MK3}>/<S>) = f(x)$ установлено, что наибольшая нормированная площадь соответствует составу Y₂BaCuO₅ + 3BaCuO₂ + 2.3CuO (рис. 2). Оптимизация состава образцов $Y_2BaCuO_5 + 3BaCuO_2 + xCuO$, в которых величина средней площади {<S_{кр}>, (мкм²)} кристаллитов YBa₂Cu₃O₇₋₆, находящихся в текстурированных макрозернах, достигает наибольших размеров, осуществлялась по вышеописанной схеме (рис. 16, 2). В образцах, состоящих из смеси фаз Y₂Cu₂O₅ + уВаСиО₂ обнаружено, что наибольшие значения $max(\langle S_{MS3} \rangle \langle S \rangle) = f(y)$, где $y_1 = 2.0, y_2 = 2.5, y_3 = 3.0,$ $y_4 = 3.5, y_5 = 4.0, y_6 = 4.5$, соответствуют составу Y₂Cu₂O₅ + 3.5BaCuO₂ (рис. 3, 4). Следует указать, что для всех составов в образцах $Y_2Cu_2O_5 + yBaCuO_2$ после их синтеза структура текстурированных макрозерен была мелкозернистой, поэтому построение функции вида $max < S_{KD} > = f(y)$ не проводилось. Таким образом, исходя из вышеизложенного, кинетика и механизм кристаллизации YBa₂Cu₃O₇₋₅ исследовались на образцах составов:

(I) — $Y_2BaCuO_5 + 3BaCuO_2 + 2.3CuO,$ (II) — $Y_2BaCuO_5 + 3BaCuO_2 + 0.6CuO,$

(III) — $\overline{Y}_2Cu_2O_5 + 3.5BaCuO_2$.

Рис. 3. Зависимость значений нормированной площади ($\langle S_{_{MK3}} \rangle / \langle S \rangle$), где $\langle S_{_{MK3}} \rangle$ — средняя площадь нескольких шлифов образца, занимаемая текстурированными макрозернами YBa₂Cu₃O_{7- ϑ}, $\langle S \rangle$ — средняя площадь нескольких шлифов от температуры отжига образцов составов Y₂Cu₂O₅ + yBaCuO₂, где y₁ = 2.0, y₂ = 2.5, y₃ = 3.0, y₄ = 3.5, y₅ = 4.0, y₆ = 4.5.

По данным изменения величины относительной интенсивности рентгеновской линии (103) установлено, что при использовании прекурсоров $Y_2Cu_2O_5$ и Y_2BaCuO_5 со средним размером зерен $d_{cp}\sim10$ мкм скорость роста $YBa_2Cu_3O_{7-\delta}$ в системах (I)—(III) хорошо описывается параболической зависимостью:

$$(I/I_{max})^2 = \kappa (t - t_0)$$
(1),

где κ — константа скорости роста YBa₂Cu₃O_{7- δ}, *I* — интенсивность рефлекса (103), измеряемая через промежутки времени $\Delta t = 1$ ч, *I*_{max} — максимальная интенсивность рефлекса (103), *t* — время синтеза YBa₂Cu₃O_{7- δ}, *t*₀ — промежуток времени с начала отжига шихты и до появления в ней YBa₂Cu₃O_{7- δ} (рис. 5*a*). Установлено, что максимальная скорость роста YBa₂Cu₃O_{7- δ} была в системе (II). Энергии активации роста YBa₂Cu₃O_{7- δ}, рассчитанные по формуле $\kappa = \kappa_0 \exp(-E/RT)$, имели значения 31—54 КДж/моль для систем (I) — (III), где κ_0 постоянная скорости роста при *t* = *t*₀ и *R* — газовая постоянная (8.31 Дж·К⁻¹·моль⁻¹).

Для установления причин, определяющих различные значения скорости роста $YBa_2Cu_3O_{7-\delta}$ в образцах систем (I)—(III) со средним размером зерен $d_{cp}\sim10$ мкм Y_2BaCuO_5 и $Y_2Cu_2O_5$, рассмотрим особенности механизма кристаллизации купрата иттрия-бария в них. На основании данных локального рентгеноспектрального микроанализа закаленных образцов с 1270—1240 К установлено, что средняя концентрация иттрия ($< C_y >$) в растворе-

Рис. 4. Зависимость максимальных значений нормированной площади { $max(<S_{ms}>/<S>)$ } от состава образцов Y₂Cu₂O₅+yBaCuO₂, где $y_1 = 2.0, y_2 = 2.5, y_3 = 3.0, y_4 = 3.5, y_5 = 4.0, y_6 = 4.5.$

расплаве не превышает 3 ат. %. Можно предположить, что $maxC_{y}$ будет на границе зерен Y₂BaCuO₅, Y₂Cu₂O₅ и раствора-расплава, а гетерогенное зарождение и рост YBa₂Cu₃O_{7-δ} должны происходить на поверхности зерен указанных твердых фаз [10, 11]. Однако, при исследовании микроструктуры закаленных образцов, образование YBa₂Cu₃O_{7-δ} выявлено не на поверхности зерен Y₂BaCuO₅ и Y₂Cu₂O₅, а в эллипсоидных областях закристаллизовавшегося раствора-расплава (рис. 6). В этом

Рис. 5. Кинетические зависимости изменения (I/I_{max}), где *I* и I_{max} — относительная и максимальная интенсивность рентгеновской линии (103) соединения YBa₂Cu₃O_{7- δ} систем; Y₂Cu₂O₅ + 3.5BaCuO₂ (*1*), Y₂BaCuO₅ + 3BaCuO₂ + 0.6CuO (2) и Y₂BaCuO₅ + 3BaCuO₂ + 2.3CuO (3), с *a*) $d_{cp} \sim 10$ мкм, δ) $d_{cp} \sim 1$ мм.

У2ВаСиО5 УВа4Си3О9-8 элипсоидная область У2ВаСиQ5 УВа2Си3О7-8.

Y₂BaCuO₅

Рис. 6. Эллипсоидные области закаленного раствора-расплава образцов систем $Y_2BaCuO_5 + 3BaCuO_2 + 0.6CuO$ (*a*), $Y_2BaCuO_5 + 3BaCuO_2 + 2.3CuO$ (*б*) и $Y_2Cu_2O_5 + 3.5BaCuO_2$ (*в*), где происходит зарождение и рост фазы $YBa_2Cu_3O_{7-\delta}$.

случае реакция перитектического превращения происходит по схеме:

 $Y_2BaCuO_5 + \mathcal{K} \rightarrow \mathcal{K} \rightarrow YBa_2Cu_3O_{7-\delta}$

В системе (II) при аналогичных условиях, кроме Y_2BaCuO_5 обнаружено и соединение $YBa_4Cu_3O_{9-\delta}$. Так как при кристаллизации $YBa_2Cu_3O_{7-\delta}$ уменьшается содержание Y_2BaCuO_5 и $YBa_4Cu_3O_{9-\delta}$, то схема перитектического превращения следующая:

 $\mathrm{YBa}_4\mathrm{Cu}_3\mathrm{O}_{9\text{-}\delta} + \mathrm{Y}_2\mathrm{Ba}\mathrm{CuO}_5 + \mathrm{W} \longrightarrow \mathrm{W} \longrightarrow \mathrm{YBa}_2\mathrm{Cu}_3\mathrm{O}_{7\text{-}\delta}.$

Таким образом, кристаллизация YBa₂Cu₃O_{7- δ} в системах (I), (II) и (III) с размером зерен d_{cp} ~10 мкм прекурсоров Y₂BaCuO₅ и Y₂Cu₂O₅ происходит в растворе расплаве. В этом случае вследствие относительно малой величины $<C_{\gamma}> ~ 3$ ат. % в растворе-расплаве скорость роста YBa₂Cu₃O_{7- δ} в системах (I) и (III) лимитирована скоростью поступления Y от зерен Y₂BaCuO₅ к растущим зернам YBa₂Cu₃O_{7- δ} через жидкость, а в системе (II) также и от зерен промежуточной фазы YBa₄Cu₃O_{9- δ}.

Известно, что плотность потока кристалообразующего вещества иттрия (J_{γ}) к поверхности зерен YBa₂Cu₃O_{7-δ} пропорциональна градиенту его концентрации (ΔC_{γ}) в жидкой фазе, которую можно условно разделить на две области с различной концентрацией Y [3]. Первая область ($\Delta C_{\gamma 1}$) расположена на границе зерен Y₂BaCuO₅/Ж, а вторая ($\Delta C_{\gamma 2}$) на границе зерен YBa₂Cu₃O_{7-δ}/Ж. Концентрацию кристалообразующего вещества в растворерасплаве считаем постоянной ($C_{\gamma 0}$). Поток вещества с единицы поверхности зерен Y₂BaCuO₅, согласно первому закону Фика, описывается формулой:

$$J_{\rm Y1} = k_1 D_{\rm Y1} / \delta_1 \Delta C_{\rm Y1}$$

где $D_{\rm Y1}$ — коэффициент химической диффузии иттрия через пограничный слой, δ_1 — толщина пограничного слоя между поверхностью зерен ${\rm Y}_2{\rm BaCuO}_5$ и условной границей, вне которой состав раствора-расплава считаем постоянным. При кристаллизации ${\rm YBa}_2{\rm Cu}_3{\rm O}_{7-\delta}$ поток иттрия на единицу поверхности кристалла составляет:

$$J_{\rm Y2} = k_2 D_{\rm Y2} / \delta_2 \Delta C_{\rm Y2},$$

где D_{Y2} — коэффициент химической диффузии иттрия через пограничный слой, δ_2 — толщина пограничного слоя между поверхностью кристалла YBa₂Cu₃O_{7- δ} и условной границей, за которой состав раствора-расплава не изменяется. В системах (I) и (III) при квазиравновесных условиях кристаллизации YBa₂Cu₃O_{7- δ}, потоки равны $J_{Y1} = J_{Y2}$, и уравнение скорости роста принимает вид:

 $v_{2(\text{крист.})} = v_{1(\text{разл.})} \Delta C_2 / \Delta C_1,$

где $v_{2(\text{крист.})} = kD_{2\text{Ж}}/\delta_2$ — скорость роста $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$, $v_{1(\text{разл.})} = kD_{1\text{Ж}}/\delta_1$ — скорость разложения зерен Y_2BaCuO_5 . В системе (II) скорость роста купрата иттрия бария определяется потоками кристалообразующего вещества от зерен Y_2BaCuO_5 — (J_{Y3}) и $\text{YBa}_4\text{Cu}_3\text{O}_{9-\delta}$ — (J_{Y4}) через жидкую фазу к поверхности кристаллита $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$. Уравнение скорости роста $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ имеет вид:

$$v_{(\text{крист.})} = \Delta C_2 \{ v_{3(\text{разл.})} / \Delta C_3 + v_{4(\text{разл.})} / \Delta C_4 \}$$

где $v_{_{3(\text{разл.})}}, v_{_{4(\text{разл.})}}$ — скорость разложения зерен Y_2 BaCuO₅ и YBa₄Cu₃O_{9- δ}, ΔC_3 , ΔC_4 — градиент концентрации иттрия на границе раздела Y₂BaCuO₅/ Ж и YBa₄Cu₃O₀₋₅/Ж. Таким образом, скорость роста $YBa_2Cu_3O_{7-\delta}$ в (I) и (III) определяется как скоростью разложения зерен Y₂BaCuO₅, а в (II) — дополнительно скоростью разложения зерен YBa₄Cu₃O₉₋₅ и обогащением жидкой фазы веществом, требуемым для кристаллизации YBa₂Cu₃O₇₋₆, так и степенью пересыщения на гаранице раздела твердая фаза — жидкость, которая при отсутствии искусственной гомогенизации раствора-расплава определяется подвижностью У в нем. Можно предположить, что наибольшая скорость роста $YBa_2Cu_3O_{7-\delta}$ в системе (II) обусловлена двумя потоками кристаллообразующего вещества к поверхности кристалла. Образование и последующее разложение YBa₄Cu₃O₉₋₆ обеспечивает, на наш взгляд, химическую гомогенизацию реагентов в растворе-расплаве. В системе (III) образование и рост зерен YBa₂Cu₃O_{7- δ} происходит также, как и в (I), но при большей скорости роста, что объясняется химической гомогенизацией, обусловленной перитектической реакцией (рис. 5а):

$$Y_2Cu_2O_5 + \mathcal{K} \rightarrow Y_2BaCuO_5.$$

При увеличении размеров зерен $Y_2Cu_2O_5$ и Y_2BaCuO_5 в 100 раз с $d_{cp} \sim 10$ мкм $d_{cp} \sim 1$ мм, изменение скорости роста $YBa_2Cu_3O_{7-\delta}$ в системах (I)—(III) можно разделить на две стадии, которые описываются квазилинейным и параболическим зависимостями (рис. 56). Наибольшая скорость роста $YBa_2Cu_3O_{7-\delta}$ наблюдалась в системе (I), а значения энергии активации роста купрата иттриябария увеличивались от 97—115 КДж/моль до 183—211 КДж/моль на первой и второй стадиях соответственно. Для объяснения данных особенностей был выполнен следующий эксперимент. Поликристаллические таблетки Y_2BaCuO_5 помещали в жидкость составов Ж(BaCu_{1.8}O_2), Ж(BaCu_{1.2}O_2), а $Y_2Cu_2O_5$ в Ж(BaCuO₂) при 1240—1290 К и после

выдержки в течение 48 ч проводили закалку. С помощью рентгеноспектрального и рентгенорадиометрического анализов установлено, что при 1240— 1270 К иттрий в жидкой фазе отсутствовал, а при 1270—1290 К обнаружен вблизи таблеток Y_2BaCuO_5 и $Y_2Cu_2O_5$. Согласно данным микроструктурного анализа на таблетке Y_2BaCuO_5 , закаленной из расплава Ж(BaCu_{1.8}O₂) от температур 1240—1270 К, обнаружен текстурированный слой YBa₂Cu₃O_{7- δ} (рис. 7). При использовании Ж(ВаСи_{1.2}O_z), на таблетке Y₂BаСuO₅ первоначально образовывался текстурированный слой YBa₄Cu₃O_{9- δ}, а затем — YBa₂Cu₃O_{7- δ} (рис. 8). Кристаллиты YBa₂Cu₃O_{7- δ} и YBa₄Cu₃O_{9- δ} росли перпендикулярно торцевой поверхности образца. Для таблетки Y₂Cu₂O₅, помещенной в расплав ВаСuO₂ при 1240—1270 К, установлена последовательность кристаллизации слоев Y₂Cu₂O₅/Y₂BaCuO₅/ YBa₂Cu₃O_{7- δ} / Ж (рис. 9).

Рис. 7. Схематическое изображение диффузионных слоев, синтезированных в системе $Y_2BaCuO_5 + \mathcal{K}(BaCu_{3,3}O_2)$ при 1260 К в течение 48 ч и микроструктура отдельных участков слоев.

ЗАКЛЮЧЕНИЕ

Для изучения кинетики и механизма кристаллизации $YBa_2Cu_3O_{7-\delta}$ с учетом величины нормированной площади текстурированных макрозерен и средней площади кристаллитов $YBa_2Cu_3O_{7-\delta}$ были выбраны три системы составов:

 $Y_{2}BaCuO_{5} + 3BaCuO_{2} + 2.3CuO,$ $Y_{2}BaCuO_{5} + 3BaCuO_{2} + 0.6CuO,$ $Y_{2}Cu_{2}O_{5} + 3.5BaCuO_{2}$ с учетом размеров зерен прекурсоров Y_2 BaCuO₅ и Y_2 Cu₂O₅ ($d_{cp} \sim 10$ мкм, $d_{cp} \sim 1$ мм).

При анализе скорости роста купрата иттриябария в системах:

 $Y_{2}BaCuO_{5} + 3BaCuO_{2} + 2.3CuO,$ $Y_{2}BaCuO_{5} + 3BaCuO_{2} + 0.6CuO,$ $Y_{2}Cu_{2}O_{5} + 3.5BaCuO_{2},$

в которых размер зерен твердых фаз Y_2BaCuO_5 и $Y_2Cu_2O_5$ соответствовал $d_{cp} \sim 10$ мкм, установлено,

Рис. 8. Схематическое изображение диффузионных слоев, синтезированных в системе $Y_2BaCuO_5 + \mathcal{K}(BaCu_{1.6}O_2)$ при 1260 К в течение 48 ч и микроструктура отдельных участков слоев.

Рис. 9. Схематическое изображение диффузионных слоев, синтезированных в системе $Y_2Cu_2O_5 + \mathcal{K}(BaCuO_2)$ при 1260 К в течение 48 ч, и микроструктура отдельных участков слоев.

что наибольшая скорость роста $YBa_2Cu_3O_{7-\delta}$ имеет место в $Y_2BaCuO_5 + 3BaCuO_2 + 0.6CuO$, обусловленная, на наш взгляд, двумя потоками кристаллообразующего вещества иттрия от зерен $YBa_4Cu_3O_{9-\delta}$ и Y_2BaCuO_5 к поверхности растущего кристаллита $YBa_2Cu_3O_{7-\delta}$ и химической гомогенизацией реагентов.

При увеличении размера зерен твердых фаз $Y_2BaCuO_5 \mu Y_2Cu_2O_5 \text{ до } d_{cp} \sim 1$ мм, наибольшая скорость роста $YBa_2Cu_3O_{7-\delta}$ наблюдалась в системе $Y_2BaCuO_5 + 3BaCuO_2 + 2.3CuO$, так как лимитиру-

ющей стадией скорости роста $YBa_2Cu_3O_{7-\delta}$ является взаимная диффузия реагентов через слой твердой фазы $YBa_2Cu_3O_{7-\delta}$, тогда как для систем Y_2BaCuO_5 + $3BaCuO_2$ + 0.6CuO и $Y_2Cu_2O_5$ + $3.5BaCuO_2$ взаимная диффузия реагентов происходит через слои твердых фаз $Y_2BaCuO_5/YBa_4Cu_3O_{9-\delta}/YBa_2Cu_3O_{7-\delta}/Ж$ и $Y_2BaCuO_5/YBa_2Cu_3O_{7-\delta}/Ж$ соответственно.

СПИСОК ЛИТЕРАТУРЫ

1. Yasunao O., Masashi H., Humihiko T. Kinetic analysis on growth of oxide superconductor crystal $YBa_2Cu_3O_x$ // J. of crystal Growth. 1994. V. 143. P. 200—205.

ОСОБЕННОСТИ КРИСТАЛЛИЗАЦИИ КУПРАТА ИТТРИЯ БАРИЯ В СИСТЕМАХ...

2. Dico P., Takebayashi S. Murakami M. Origin of subgrain formation in melt-grown Y-Ba-Cu-O bulks // Physica C. 1998. V. 297. P. 216—222.

3. *Y. Shiohara, A. Endo.* Crystal growth of bulk high- T_c superconducting oxide materials // Materials Science and Engineering, 1997. V. 19. P. 1—86.

4. С.Р. Ли, Н.Н. Олейников, Е.А. Гудилин. Проблемы и перспективы развития методов получения ВТСП материалов из расплава // Неорганические материалы. 1993. Т. 29. № 1. С. 3—17.

5. Aristianti M.M., Barus, Taylor A.T. Quench study investigation of the peritectic reaction as a function of crystallite size in $YBa_2Cu_3O_{7-\delta}$ // Physica C. 1998. V. 297. P. 211—214.

6. Chigareva O.G., Mikirticheva G.A., Grebenschikov V.I. Sequence of formation during solid-state synthesis in the Y_2O_3 -BaO-CuO system // Mat. Ress. Bull. 1990. V. 25. P. 1435—1442. 7. Ryelandt L., Schewebach A., Willot I. and et. al., Reactive Growth of $YBa_2Cu_3O_{7-\delta}$ layers on Y_2BaCuO_5 substratees // J. of Allous and Compaunds, 1993. No 195. P. 227-230.

8. Каланда Н.А., Трухан В.М., Кецко В.А. Выращивание монокристаллов $YBa_2Cu_3O_{7-\delta}$ в системах Y_2BaCuO_5 – $x"Ba_3Cu_5O_8"$ и Y_2BaCuO_5 -{" $Ba_3Cu_5O_8"$ и Y_2BaCuO_5 -{" $Ba_3Cu_5O_8"$ + $xBaCuO_2$ } // Инженерная физика. 2002. № 3. С. 39—43.

9. Mari-Ann Einarsrud, Anne Marie Mardal Moe, Stein Yulsrud. Growth and characterisation of YBa₂Cu₃O_{7-x} high T_c superconducting crystals // J. of crystal Growth. 1997. V. 182. P. 363—374.

10. *Alarco J.A., Olsson E.* Microstructural characterization of quenched melt-textured YBa₂Cu₃O_{7- δ} materials // J. Mater. Res. 1997. V. 12. № 3. P. 624—635.

11. Yuichi Nakamura, Tsuyoshi Kawase, Teruo Izumi, Kiyoshi Murata, Yuh Shioharaa. Crystal growth of $ReBa_2Cu_3O_x$ superconductive oxides from semi-solid melt // J. of crystal Growth. 2001. V. 229. P. 369—373.