УДК 538.915

ВЛИЯНИЕ ФТОРИРОВАНИЯ НА ЭЛЕКТРОННУЮ СТРУКТУРУ ПЛЕНКИ HgBa₂Ca₂Cu₃O₈

© 2007 О. И. Дубровский, Чан Тхи Тху Хань

Воронежский государственный университет Поступила в редакцию 15.06.07

С помощью метода линеаризованных присоединенных плоских волн рассчитана электронная структура, плотности электронных состояний и рентгеновские эмиссионные спектры пленок HgBa₂Ca₂Cu₃O₈F_{δ} ($\delta = 0$; 0,5). Показано, что фторирование приводит к увеличению плотности состояний атомов кислорода в прифермиевской области, а также усилению резонансного взаимодействия Cu 3*d*- и O 2*p*-состояний в сверхпроводящих слоях CuO₂.

ВВЕДЕНИЕ

Среди всех высокотемпературных сверхпроводников (ВТСП) особый интерес представляют ртутьсодержащие соединения системы Hg-Ba-Ca-Cu-O, поскольку именно в этой системе зафиксированы рекордно высокие значения критической температуры (T_c) перехода в сверхпроводящее состояние. Кроме того, оказалось, что структурные изменения в анионной подрешетке, а именно, внедрение атомов F в структуру, приводят в соединении HgBa₂Ca₂Cu₃O₈, обладающем наибольшей T_c , к ее дополнительному повышению на ~4 K [1]. В связи с этим нами проведено моделирование влияния фторирования на электронную структуру пленки HgBa₂Ca₂Cu₃O₈.

МЕТОДИКА РАСЧЕТА

В работе исследовались пленки HgBa₂Ca₂Cu₂O₂ и HgBa₂Ca₂Cu₃O₈F_{0.5}, толщина которых соответствует двум элементарным ячейкам объемного кристалла (см. рис. 1). Атомы фтора, внедряемые в структуру при фторировании, в нашей имитационной модели пленки занимают часть вакантных позиций в слоях, образованных атомами ртути, в соответствии с экспериментальными данными [1]. Пленки имеют тетрагональную решетку Бравэ и симметрию относительно плоскости центрального слоя (z = 0). Из соображений симметрии ясно, что атомы слоев, являющихся зеркальным отражением друг друга относительно плоскости центрального слоя, абсолютно эквивалентны по своим свойствам и вкладу в формирование электронной структуры пленки, так же, как эквивалентны и оба атома кислорода, лежащие в пределах каждого медь-кисло-

Рис. 1. Элементарная ячейка (показана только «верхняя» половина) пленок $HgBa_2Ca_2Cu_3O_8F_{\delta}$ ($\delta = 0$; 0,5). Позиция X вакантна в пленке с $\delta = 0$ и заполнена атомом F в пленке с $\delta = 0,5$.

родного слоя. Поэтому в дальнейшем рассматриваются только неэквивалентные между собой атомы.

Зонная структура пленки рассчитывалась в рамках приближения функционала локальной плотности с использованием пленочного скалярно-релятивистского метода линеаризованных присоединенных плоских волн (ЛППВ) [2]. При этом набор базисных функций для пленок HgBa₂Ca₂Cu₂O₂ и HgBa₂Ca₂Cu₃O₈F_{0.5} составил 1520 и 1560 ЛППВ, соответственно. По результатам расчетов зонной структуры для каждой пленки были вычислены полные и локальные парциальные плотности электронных состояний (ПЭС) всех неэквивалентных атомов. Кроме того, для обеих пленок были рассчитаны рентгеновские эмиссионные спектры (РЭС). Поскольку валентная зона исследуемых соединений образована Cu 3d-и O 2p-состояниями, в работе рассчитывались рентгеновские эмиссионные CuL_a- и OK_a-спектры, отражающие распределение именно этих состояний в валентной зоне.

Ферми в пленках $HgBa_2Ca_2Cu_3O_8F_\delta$ ($\delta = 0; 0,5$)						
Пленка		HgBa ₂ CaCu ₂ O ₈	HgBa ₂ Ca ₂ Cu ₃ O ₈ F _{0.5}			
$N(E_F),$ сост./эВ·эл. ячейку		11,380	10,675			
N _{СuO2} ; сост./эВ∙слой		2,184	2,430			
<i>п_а(Е_F),</i> сост.∕ эВ∙атом	Hg _s	0,300	0,280			
	Hg_{c}	0,080	0,026			
	Ba _{s-1}	0,134	0,116			
	Ba_{c+1}	0,102	0,018			
	Ca _{s-3}	0,030	0,032			
	Ca _{c+3}	0,026	0,024			
	$Cu^{(1)}_{s-2}$	0,396	0,444			
	Cu ⁽²⁾	0,568	0,666			
	$Cu^{(1)}_{c+2}$	0,316	0,380			
	${ m O}_{s-1}^{(3)}$	0,612	0,542			
	$O_{s-2}^{(1)}$	0,122	0,122			
	O ⁽²⁾	0,234	0,250			
	${\rm O}_{c+2}^{(1)}$	0,096	0,098			
	$O_{c+1}^{(3)}$	0,120	0,058			
	F		0,026			

Таблица 1 Полная $N(E_{_{F}})$ и локальные $n_{_{cl}}(E_{_{F}})$ ПЭС на уровне Ферми в пленках HgBa₂Ca₂Cu₃O₈F_{$_{\delta}$} ($\delta = 0; 0, 5$)

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты расчета полных и локальных ПЭС исследуемых пленок представлены на рис. 2, 3 и в таблице 1. Отметим, что расчет показал, что атомы Ва и Са в значительной степени ионизированы, состояния этих атомов располагаются главным образом выше E_F , начиная с 4 эВ. Нg 5*d*-состояния локализованы преимущественно у самого дна валентной зоны и также почти не влияют на элект-

ронную структуру вблизи E_F . Поэтому на рисунках ПЭС этих атомов не показаны.

Как и во всех купратных ВТСП, определяющий вклад в формирование валентной полосы пленки вносят Cu 3*d*- и O 2*p*-состояния. Видно, что сущес-

Рис. 3. Полная и локальные ПЭС пленки HgBa₂Ca₂Cu₃O₈F_{0.5}

твенных изменений в ПЭС почти всех атомов при переходе от пленки HgBa₂Ca₂Cu₃O₈ к пленке HgBa₂Ca₂Cu₃O₈F_{0.5} не произошло. Небольшие изменения можно наблюдать лишь в ПЭС атомов $O^{(3)}_{\ \ c^{+1}}$ и $O^{(1)}_{\ \ c^{+2}}$: особенности спектров этих атомов сдвинулись на ~0,2 эВ в сторону уровня Ферми, что привело к увеличению плотности состояний атомов кислорода в прифермиевской области. Такой характер изменения локальных плотностей состояний вполне объясним. Как известно, при уменьшении заполнения *p*-оболочки кислорода она поднимается вверх по шкале энергий. При введении в решетку атома F, еще одного атома-аниона, образуется дефицит валентных электронов в катионной подрешетке для заполнения внешних р-оболочек атомов кислорода. Наиболее ощутимым этот дефицит оказывается для атомов кислорода, ближайших к внедренному атому фтора, т.е. как раз для атомов $O^{(3)}_{c+1}$ и $O^{(1)}_{c+2}$.

Приведенные в таблице 1 значения полной $N(E_F)$ и локальных $n_{at}(E_F)$ ПЭС на уровне Ферми

Таблица 2

Положения главных максимумов (в эВ,
относительно уровня Ферми) и энергетические
расстояния между ними в ОК _а - и СиL _а -спектрах
пленок HgBa,Ca,Cu,O, F_s ($\delta = 0; 0, 5$)

Пленка		$\mathrm{HgBa_2CaCu_2O_8}$	$\mathrm{HgBa}_{2}\mathrm{Ca}_{2}\mathrm{Cu}_{3}\mathrm{O}_{8}\mathrm{F}_{0.5}$
Максимум CuL_{α}		-3,0	-2,7
Максимум ОК _а	A	-1,2	-1,0
	В	-3,9	-3,9
Максимум $O^{(1)}K_{\alpha}$	A	-1,5	-1,3
	В	-4,0	-3,9
Максимум $O^{(2)}K_{\alpha}$	А	-0,8	-0,8
	В	-3,5	-3,5
$OK_{a}(A) - CuL_{a}$		1,8	1,7
$OK_{\alpha}(A) \longrightarrow OK_{\alpha}(B)$		2,7	2,9
$O^{(1)}K_{\alpha}(A) \longrightarrow O^{(1)}K_{\alpha}(A)$	3)	2,5	2,6
$\mathrm{O}^{(2)}K_{\alpha}(A) - \mathrm{O}^{(2)}K_{\alpha}(A)$	B)	2,7	2,7

показывают, что фторирование не увеличивает значения $N(E_F)$. Однако, согласно гипотезе [3, 4] о природе сверхпроводимости в ВТСП-купратах, куперовское взаимодействие между электронами происходит в пределах слоев СuO₂, а величина T_c зависит от значения на уровне Ферми плотности состояний, локализованных в этих слоях. В связи с этим отметим, что значение этой величины в пленке HgBa₂Ca₂Cu₃O₈ (см. табл. 1). Эти результаты качественно подтверждают гипотезу [3, 4], и могут быть одной из причин увеличения T_c при фторировании HgBa₂Ca₂Cu₃O₈.

На рис. 4 приведены рассчитанные СиL_a-и ОК_aспектры пленок, а положения максимумов этих спектров приведены в таблице 2. В этих спектрах характерное для ВТСП купратов сильное *d-р* взаимодействие резонансного типа [5] проявляется в расщеплении ОК_а-спектра на две компоненты в области локализации максимума $\mathrm{Cu}L_{\!_{\alpha}}$ -спектра. При этом можно заметить, что $O^{(2)}K_{a}$ -спектр расщепляется сильнее, чем О⁽¹⁾, свидетельствуя о несколько более сильном *d-p* взаимодействии в слоях Cu⁽²⁾-O⁽²⁾, чем в Cu⁽¹⁾-O⁽¹⁾. Данный результат легко понять, если принять во внимание особенности кристаллической структуры данного соединения, а именно — искажение (гофрированность) атомных слоев Cu⁽¹⁾-O⁽¹⁾ [1], возникающее в результате смещения атомов $Cu^{(1)}$ из плоскости атомов $O^{(1)}$ и увеличивающее тем самым длину связи Си — О по сравнению с абсолютно плоским слоем $Cu^{(2)}$ - $O^{(2)}$.

Видно, что влияние фторирования на спектры проявляется лишь в небольшом (на ~0,2 эВ) смещении главного максимума полного OK_{α} -спектра в сторону меньших энергий связи, отражающее отмеченные выше аналогичные изменения в локальных ПЭС. В результате примерно на такую же величину увеличивается расщепление OK_{α} -спектра, что свидетельствует об усилении *d-p* взаимодействия в пленке HgBa₂Ca₂Cu₃O₈F_{0.5}. Мы надеемся, что отмеченные тенденции в РЭС спектрах в дальнейшем получат подтверждение в соответствующих экспериментальных работах.

Рис. 4. Рентгеновские эмиссионные CuL_{a} -, OK_{a} -спектры пленок HgBa₂Ca₂Cu₃O₈ (*a*) и HgBa₂Ca₂Cu₃O₈F_{0.5} (*b*).

Таким образом, можно сделать вывод, что основное влияние фторирование оказывает на электронную структуру медь-кислородных слоев пленки. Усиление взаимодействия Cu 3*d*- и O 2*p*состояний в сверхпроводящих слоях CuO₂, а также увеличение плотности связанных с атомами этих слоев состояний на уровне Ферми, могут являться причинами возрастания критической температуры соединения HgBa,Ca,Cu₃O₈ при фторировании.

СПИСОК ЛИТЕРАТУРЫ

1. K.A. Lokshin, D.A. Pavlov, S.N. Putilin, E.V. Antipov, D.V. Shepyakov, A.M. Balgurov // Phys. Rev. B. 2001. V. 63. P. 064511.

2. *Krakauer H., Posternak M., Freeman A.J.* // Phys. Rev. B. 1979. V. 19. № 4. P. 1706—1719.

3. Локтев В.М. // ФНТ. 1996. Т. 22. № 1. С. 3—42.

4. Kasowski R.V., Hsu W.Y., Herman F. // Phys. Rev. B. 1988. V. 38. № 10. P. 6470—6477.

5. *Курганский С.И*. Электронная структура тонких пленок сложных металлооксидов: Дис... докт. физ.-мат. наук. Воронеж, 1996. 261 с.