УДК 539.219:621.9

ЭЛЕКТРИЧЕСКАЯ АКТИВАЦИЯ ФОСФОРА В СЛОЯХ КРЕМНИЯ, АМОРФИЗОВАННЫХ ИОННОЙ ИМПЛАНТАЦИЕЙ

© 2007 О.В. Александров, А.Б. Милош

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Поступила в редакцию 11.10.06

Исследована кинетика электрической активации примеси фосфора в слое монокристаллического кремния, аморфизованного имплантацией, при пониженных температурах термического отжига. Процесс активации рассмотрен на базе зависимостей от времени и температуры отжига поверхностного (слоевого) сопротивления. Показано, что электрическая активация фосфора начинается с монокристаллической части имплантированного слоя и только после ее завершения начинается электрическая активация в аморфизованной части имплантированного слоя, обусловленная твердофазной эпитаксиальной кристаллизацией.

введение

Повышение степени интеграции современных ИМС осуществляется путем уменьшения боковых и вертикальных размеров элементов. Для уменьшения вертикальных размеров используется как понижение энергии ионов при ионной имплантации, так и уменьшение температуры постимплантационного отжига. Как известно [1, 2], ионная имплантация сопровождается образованием в имплантированном слое высокой концентрации радиационных дефектов, количество которых растет с увеличением дозы имплантации вплоть до аморфизации. Механизм образования радиационных дефектов весьма сложный. При внедрении в кристаллическую подложку ионы подвергаются электронным и ядерным столкновениям, однако только ядерные взаимодействия приводят к смещению атомов подложки из узлов кристаллической решетки [2-4]. При этом возникают первичные радиационные дефекты — вакансии, собственные междоузельные атомы и пары Френкеля. При взаимодействии вакансий и междоузельных атомов друг с другом, а также с атомами примеси образуются вторичные радиационные дефекты — комплексы и кластеры точечных дефектов. Если концентрация смещенных атомов сравнима с концентрацией атомов матрицы (5·10²² см⁻³) или концентрация вторичных дефектов достигает примерно 10 ат. %, то имплантированный материал становится аморфным [2, 4].

Радиационные дефекты являются причиной неполной электрической активации легирующей примеси после ионной имплантации. Для увеличения степени электрической активации, необходимо проведение термического отжига, который уменьшает концентрацию радиационных дефектов и снижает их отрицательное воздействие на электрические свойства полупроводниковых структур.

Электрическая активация примеси в неаморфизованных слоях полупроводников происходит при термических отжигах вследствие встраивания атомов примеси в кристаллическую решетку подложки и отжига радиационных дефектов, создающих компенсирующие уровни в запрещенной зоне [2, 4]. Электрическая активация примеси в аморфизованном слое полупроводников происходит при термических отжигах вследствие твердофазной эпитаксиальной кристаллизации данного слоя [4].

Целью данной работы являлось исследование кинетики электрической активации примеси фосфора в слое монокристаллического кремния, аморфизованного имплантацией, при пониженных температурах термического отжига. Процесс активации изучался на базе зависимостей от времени и температуры отжига поверхностного (слоевого) сопротивления, как одной из наиболее чувствительных к радиационным дефектам характеристик полупроводниковых слоев.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных использовались пластины кремния, выращенного методом Чохральского, марки КДБ-1 ориентации (111). В пластины была

Рис. 1. Зависимости слоевого сопротивления от времени отжига при температурах, °С: *1*—450; *2*—475; *3*—487,5; *4*—500; *5*—525; *6*—550; *7*—600; *8*—700. Точки — эксперимент, сплошные линии — расчет.

проведена имплантация ионов фосфора с энергией E = 100 кэВ и дозой $Q = 8.1 \cdot 10^{15}$ см⁻². Отжиги образцов проводились в термической печи в диапазоне температур $T = 450 \div 700$ °C в течение времени от 3 секунд до 18 часов. Слоевое сопротивление (R_s) измерялось с помощью четырехзондового метода.

По экспериментальным данным были построены зависимости изменения слоевого сопротивления от времени отжига $R_s(t)$ при различных температурах, приведенные на рис. 1 значками.

АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ЗАВИСИМОСТЕЙ

Как видно из рис. 1, электрическая активация примеси фосфора в имплантированных слоях кремния происходит в несколько этапов, схематично представленных на рис. 2. Эти этапы можно связать с параллельным подключением проводимостей, обусловленных различными механизмами активации. Начальное значение слоевого сопротивления R_0 лежит в диапазоне 3320 ÷ 5400 Ом/кв. Первая точка перегиба (R_1) с увеличением температуры отжига падает от 900 до 160 Ом/кв, вторая точка перегиба (R_2) падает от 350 до 100 Ом/кв. Конечное значение слоевого сопротивления по завершении отжига (R_3) не зависит от температуры отжига и составляет 36 ÷ 40 Ом/кв. Характерные точки этапов электрической активации и найденные соответствующие кинетические параметры

Рис. 2. Общий вид зависимости слоевого сопротивления от времени отжига при постоянной температуре.

<i>T</i> , °C	<i>R</i> ₀ , Ом/кв	<i>R</i> ₁ , Ом/кв	<i>R</i> ₂ , Ом/кв	<i>R</i> ₃ , Ом/кв	τ_1, c	<i>t</i> ₁ , c	τ ₂ , c	<i>t</i> ₂ , c	<i>t</i> ₃ , c	$V_{_{\alpha}}$, см/с
450	4100	900	350	40	100	600	5000	3,6•104	4,8•10 ⁵	5·10 ⁻¹¹
475	4300	590	260	38,5	68	480	3000	1,44•10 ⁴	1,5•105	1,7•10 ⁻¹⁰
487,5	4300	550	215	42	35	240	2500	7,2•10 ³	3,7•104	7,7•10 ⁻¹⁰
500	3320	500	200	40	24	120	1900	4,2·10 ³	7•10 ³	8,2•10-9
525	4400	485	120	37	3	30	714	960	7,2•10 ³	3,7•10-9
550	4500	480	115	36	1,4	15	434	480	3,6•10 ³	7 ,3 •10 ⁻⁹
600	3320	160	110	40	0,9	9	49	240	780	4,2•10-8
700	5400	320	100	39	0,4	3	0,7	7	13	3,8•10-6

при разных температурах отжига приведены в таблице.

На первом ($t < t_1$) и втором ($t_1 < t < t_2$) этапах падение слоевого сопротивления можно аппроксимировать экспоненциальными зависимостями от времени:

$$R_{s1}(t) = (R_0 - R_1) \exp\left(-\frac{t}{\tau_1}\right) + R_1;$$

$$R_{s2}(t) = (R_1 - R_2) \exp\left(-\frac{t - t_1}{\tau_2}\right) + R_2,$$

где τ_1 и τ_2 — постоянные времени отжига на первом и втором этапах, соответственно. Постоянные времени отжига τ_1 и τ_2 уменьшаются с ростом температуры отжига (см. таблицу) в соответствии с выражениями: $\tau_1 = \tau_{01} \exp\left(\frac{E_1}{kT}\right)$ и $\tau_2 = \tau_{02} \exp\left(\frac{E_2}{kT}\right)$, где E_1 и E_2 — соответствующие энергии активации отжига, k — постоянная Больцмана, T — абсолютная температура отжига.

Из экспериментальных зависимостей, приведенных на рис. 1, были определены параметры кинетических зависимостей электрической активации примеси фосфора на первом и втором этапах отжига (рис. 3 *a*, *б*): $\tau_{01} = 2,4 \cdot 10^{-7}$ с, $E_1 = 1,20$ эВ, $\tau_{02} = 1,5 \cdot 10^{-8}$ с, $E_2 = 1,54$ эВ.

Было установлено, что на третьем этапе ($t_2 < t < t_3$) рост проводимости происходит по линейному закону (рис. 4):

$$\sigma(t) = b(t - t_2)$$

где коэффициент $b = \frac{\sigma_3}{t_3 - t_2}$, $\sigma_3 = R_3^{-1} - R_2^{-1}$. Соот-

Рис. 3. Логарифмические зависимости $\tau_1(a)$ и $\tau_2(b)$ от обратной температуры. Точки — эксперимент, прямые — аппроксимация с параметрами: $\tau_{01} = 2,4 \cdot 10^{-7}$ с, $E_1 = 1,2$ эВ и $\tau_{02} = 1,5 \cdot 10^{-8}$ с, $E_2 = 1,54$ эВ.

ветственно, падение слоевого сопротивления на этом этапе происходит по обратно-пропорциональному закону:

$$R_{s3}(t) = 1/[b(t-t_2)].$$

Общая зависимость слоевого сопротивления от времени отжига описывается зависимостью, соответствующей параллельному соединению трех слоевых сопротивлений:

$$R_{s\Sigma}^{-1}(t) = R_{s1}^{-1}(t) + R_{s2}^{-1}(t) + R_{s3}^{-1}(t)$$

С увеличением температуры отжига длительности всех этапов активации сокращаются. На рис. 1 сплошными линиями приведены зависимости слоевого сопротивления от времени при различных температурах отжига, рассчитанные с использованием найденных параметров.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

После имплантации ионов фосфора в монокристаллический кремний с дозой, превышающей порог аморфизации, большая часть примеси оказывается в аморфизованной части имплантированного слоя, в которой не проявляет донорных свойств. Остальная часть примеси остается в неаморфизованной части имплантированного слоя, в котором лишь небольшая ее часть занимает узлы кристаллической решетки, проявляя электрическую активность.

Как видно из полученных результатов, активация фосфора происходит в три этапа, на которых работают различные механизмы активации. На первых двух этапах работают механизмы, связанные со встраиванием атомов примеси в кристаллическую решетку кремния и с отжигом радиационных дефектов, создающих компенсирующие уровни в запрещенной зоне. Кинетика активации на этих этапах имеет экспоненциальный характер, обнаруженный еще в ранних работах по отжигу кристаллических имплантированных слоев кремния [5]. Найденные энергии активации $E_1 = 1,20$ эВ, $E_2 = 1,54$ эВ находятся внутри литературного диапазона от $E_a = 0,15 \div 0,26$ эВ [6] до $E_a = 0,77 \div 1,59$ эВ [2] для отжига слоев кремния, имплантированных фосфором.

Линейное изменение проводимости со временем на третьем этапе отжига (рис. 4) связано, повидимому, с твердофазной эпитаксиальной (ТФЭ) кристаллизацией аморфизованного имплантацией слоя. Скорость ТФЭ кристаллизации аморфизованного слоя определялась из выражения:

Рис. 4. Зависимость проводимости от времени при температуре отжига, °C: 1 - 450, 2 - 475, 3 - 487,5. Точки — эксперимент, прямые — по выражению $\sigma(t) = b(t - t_2)$.

Рис. 5. Логарифмическая зависимость скорости кристаллизации от обратной температуры. Точки — эксперимент, сплошная прямая — аппроксимация ($E_a = 2,69$ эВ, $V_0 = 4,2\cdot10^8$ см/с); пунктирная прямая — по данным [9] ($E_a = 2,7$ эВ, $V_0 = 4,64\cdot10^8$ см/с).

$$V_{\alpha} = \frac{h_{\alpha}}{t_3 - t_2}$$

где $h_{\scriptscriptstyle \! \alpha}$ — толщина аморфного слоя. Толщина амор-

фного слоя определялась по формуле $h_{\alpha} = R_p +$

$$+\Delta R_{p}\sqrt{2Ln\left[\frac{Q}{\left(C_{\alpha}\sqrt{2\pi}\Delta R_{p}\right)}\right]}$$
, где R_{p} — средний про-

ецированный пробег ионов фосфора, ΔR_p — среднеквадратичный разброс проецированных пробегов ($R_p = 128,3$ нм, $\Delta R_p = 45,7$ нм для ионов P⁺ при энергии 100 кэВ [8]), C_a — концентрация фосфора, соответствующая пороговой дозе аморфизации Q_a . Это выражение основано на том, что область с превышением дозы аморфизации помещается в аморфизованном слое имплантированного материала. При $Q_a = 6,25 \cdot 10^{14}$ см⁻² [4] имеем $C_a = 5,26 \cdot 10^{19}$ см⁻³, $h_a = 0,23$ мкм. Значения скоростей ТФЭ кристаллизации при разных температурах отжига приведены в таблице. Скорость ТФЭ кристаллизации аморфизованного слоя зависит от температуры отжига в соответствии с законом Аррениуса: $V_{\alpha} = V_0 \exp\left(-\frac{E_{\alpha}}{kT}\right)$, где E_{α} — энергия

ТФЭ кристаллизации аморфизованного слоя, V_0 — постоянная. По результатам обработки эксперимента (рис. 5) были получены следующие значения параметров этой зависимости: $E_a = 2,69$ эВ, $V_0 = 4,2 \cdot 10^8$ см/с. Найденные значения параметров скорости ТФЭ кристаллизации близки к соответствующим литературным значениям: $E_a = 2,7$ эВ, $V_0 = 4,64 \cdot 10^8$ см/с [9], что свидетельствует о правильности трактовки природы третьего этапа активации.

ЗАКЛЮЧЕНИЕ

Полученные результаты показывают, что электрическая активация примеси фосфора в слое кремния, имплантированном с дозой выше порога аморфизации, начинается с монокристаллической части имплантированного слоя и обусловлена процессами встраивания атомов примеси в кристаллическую решетку кремния и отжига радиационных дефектов, создающих компенсирующие уровни в запрещенной зоне. Только после завершения электрической активации фосфора в монокристаллической части слоя, начинается электрическая активация примеси в аморфизованной части имплантированного слоя, обусловленная ее твердофазной эпитаксиальной кристаллизацией.

СПИСОК ЛИТЕРАТУРЫ

1. Александров О.В. Технологические процессы изготовления СБИС: Учеб. Пособие. СПб.: Изд-во СПб-ГЭТУ «ЛЭТИ», 2005.

2. *Х. Риссел, И. Руге.* Ионная имплантация: Пер. с нем. В.В. Климова, В.Н. Пальянова / Под ред. М.И. Гусевой. М.: Наука, 1983.

3. *Черняев В.Н.* Технология производства интегральных микросхем и микропроцессоров. М.: Радио и связь, 1987. 464 с.

4. Технология СБИС: в 2-х кн. Кн. 1 / Под ред. С. Зи. М.: Мир, 1986.

5. C. S. Fuller, in: Defect interactions in semiconductors, American Chemical Society Monograph Series, № 140, Ed.

N. B. Hannay, Chap. 5, Reinhold Publ. Co., New York 1959. P. 209.

6. *T. Hadjersi*. Annihilation kinetics of defects induced by phosphorus ion implantation in silicon. Applied Surface Science. 2001. № 185. P. 140—146.

7. J. Said, H. Jaouen, G. Ghibaudo, I. Stoemenos. Electrical and physical investigation of defect annihilation in arsenic implanted silicon. Phys. Stat. Sol. 1990. № 117. P. 99.

8. А.Ф. Буренков, Ф.Ф. Комаров, М.А. Кумахов, М.М. Темкин. Пространственные распределения энергии, выделенной в каскадах атомных столкновений в твердых телах. М., Энергоатомиздат, 1985.

9. *G.L. Olson, J.A. Roth.* Solid phase epitaxy. Ch.7 in "Handbook of crystal growth", V.3. Ed. by D.T.J. Hurle. 1994. P. 257—312.