УДК 534.1

ВЛИЯНИЕ ЗАТУХАНИЯ УЛЬТРАЗВУКА НА ЭФФЕКТИВНОСТЬ АКУСТООПТИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ КОГЕРЕНТНОГО ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ И УЛЬТРАЗВУКА С ОГРАНИЧЕННЫМ ЧАСТОТНЫМ СПЕКТРОМ В ОБЛАСТИ ВЫСОКИХ ЧАСТОТ

© 2006 П.Л. Маньков

Воронежский государственный университет

Поступила в редакцию 13.12.05

Рассматривается влияние затухания ультразвука на эффективность акустооптического взаимодействия когерентного оптического излучения и ультразвука с ограниченным частотным спектром в области высоких частот.

введение

Исследование различных вопросов акустооптического взаимодействия проводилось в [1-5 и др.]. Эффективность акустооптического взаимодействия оптического излучения и ультразвука с ограниченным спектром в области высоких частот рассматривалась в [6]. Однако при этом не учитывалось затухание ультразвука при его распространении в среде акустооптического взаимодействия. Поэтому исследование влияния затухания ультразвука на эффективность акустооптического взаимодействия представляет практический интерес.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Рассмотрим распространение плоской акустической волны s(x, t) с непрерывным спектром, занимающим полосу частот Δω, вдоль положительного направления оси Х в изотропной среде, ограниченной плоскостями z = 0 и z = L (рис. 1). Для учета затухания ультразвука в среде акустооптического взаимодействия введем коэффициент затухания α(ω), возрастающий с увеличением частоты ультразвука. Обозначим $\alpha(\omega) = \alpha(\omega_0)(1 + (\omega - \omega_0)/\omega_0)$, где ω₀ – центральная частота спектра ультразвука. Будем считать, что на плоскость z = 0 под углом Брэгга θ_ь к оси z падает плоская электромагнитная волна $\vec{E} = E_0 \exp[j(kx \sin\theta_{\rm b} + kz \cos\theta_{\rm b} - v_0 t)]$ с амплитудой Е₀ и частотой v₀. Волновое число световой волны $k = 2\pi n/\lambda - (\lambda - длина волны света, n - показатель$ преломления невозмущенной среды акустооптического взаимодействия), а угол Брэгга определяется из условия $\sin\theta_{\rm E} = -K_{\rm E}/2k_0 (K_{\rm E} = \omega_{\rm E}/V)$ и $\omega_{\rm E}$ – волновой вектор и частота спектральной составляющей

Рис. 1. Геометрия акустооптического взаимодействия

ультразвука, для которой выполняется условие Брэгга, V – скорость звука в среде взаимодействия). Под воздействием акустической волны происходит изменение показателя преломления среды: $n(x, t) = n + \Delta ns(x, t)$, где Δn – амплитуда изменения показателя преломления, вызванная акустической волной единичной мощности.

Будем решать, аналогично [1, 6], волновое уравнение для световой волны в области $(0 \le z \le L)^{i}$ ствия оптического излучения и звука $(0 \le z \le L)^{i}$ -

$$\frac{\partial x^2}{\partial x^2} + \frac{\partial z^2}{\partial z^2} = \frac{\partial z^2}{\partial t^2}$$
(1)

Так как для большинства сред акустооптического взаимодействия справедливо соотношение $\Delta n/n$ << 1, то волновое уравнение (1) для нашего случая можно представить как

$$\frac{\partial^{2}E}{\partial x^{2}} + \frac{\partial^{2}E}{\partial z^{2}} - \frac{n^{2}}{c^{2}}\frac{\partial^{2}E}{\partial t^{2}} = \frac{2n\Delta n}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}(sE)$$
(2)

Представляя акустическую волну в виде разложения по плоским монохроматическим волнам с учетом коэффициента затухания

$$s(x, t) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(\omega, K) \exp(-\alpha(\omega) x)$$

$$exp(j [Kx - \omega t]) dKd\omega$$
(3)

и подставляя (3) в волновое уравнение (2), аналогично [1, 6] получаем выражение для амплитуды дифрагированного света в первом приближении, когда спектральная функция ультразвука S(ω , K) не зависит от координаты z,

$$E^{(i)}(\mathbf{k}_{x},\mathbf{L}, \nu) = j \frac{\mathbf{k}^{2}\mathbf{L}}{4\pi^{2}\mathbf{k}_{x}} S(\nu - \nu_{0}, \mathbf{k}_{x} - \mathbf{k}_{Ex})$$

exp(-\alpha(\omega = \nu - \nu_{0}) x) sine(\frac{\eta \L}{2}) exp(\frac{j\eta \L}{2}).

В этом случае интенсивность дифрагированного оптического излучения определяется как

$$I^{(i)}(k_{x},L, \nu) = \left| E^{(i)}(k_{x},L, \nu) \right|^{2} =$$
$$= \left(\frac{k^{2}L}{4\pi^{2}k_{z}}\right)^{2} S^{2}(\nu - \nu_{0}, k_{x} - k_{Ex}) \cdot$$
$$\cdot \exp\left(-2\alpha(\omega = \nu - \nu_{0}) x\right) \operatorname{sinc}^{2} \frac{\eta L}{2}$$

(4)

Фазовая расстройка η, определяющая интенсивность дифрагированного света, может быть представлена в виде [6]

$$\eta \approx \frac{\pi Q}{L} \frac{\Delta \omega_0}{\omega_B} \left[1 + \frac{\Delta \omega_0}{\omega_B} \left(1 + \frac{\Delta \omega}{\omega_0} \frac{\omega_0}{\Delta \omega_0} \frac{\omega - \omega_0}{\Delta \omega} \right) \right]$$
$$\cdot \left(1 + \frac{\Delta \omega}{\omega_0} \frac{\omega_0}{\Delta \omega_0} \frac{\omega - \omega_0}{\Delta \omega} \right)$$

где $Q = \lambda_0 L f_E^2 / n V^2$ – волновой параметр акустооптического взаимодействия (λ_0 – длина волны падающего света; L – длина акустооптического взаимодействия; $f_E = \omega_E / 2\pi$ – частота ультразвука, для которой выполняется условие Брэгга; n – коэффициент преломления невозмуположета. акустооптического взаимодействия); $\Delta \omega_0 = \omega_0 - \omega_{\rm E}$ – расстройка центральной частоты ультразвука относительно частоты Брэгга; $\Delta \omega = 2\pi\Delta f$ – ширина спектра ультразвука. Сравнивая (4) с аналогичными результатами, полученными в [6], замечаем, что интенсивность дифрагированного света определяется не только волновым параметром акустооптического взаимодействия Q и величиной фазовой $\exp(-\alpha(\omega = v - v_0) x)^{2лнительным множителем}$, обусловленным затуханием ультразвука.

ЗАКЛЮЧЕНИЕ

В работе рассмотрено акустооптическое взаимодействие когерентного оптического излучения и ультразвука с ограниченным непрерывным спектром в области высоких частот с учетом затухания последнего при его распространении в среде взаимодействия. Показано, что помимо волнового параметра акустооптического взаимодействия и величины отклонения центральной частоты спектра ультразвука от частоты Брэгга на интенсивность дифрагированного света существенное влияние оказывает затухание ультразвука.

СПИСОК ЛИТЕРАТУРЫ

1. Гуляев Ю.В., Проклов В.В., Шкердин Г.Н. Дифракция света на звуке в твердых телах //УФН. 1978. Т. 124. № 1. С. 61 – 93.

2. Балакший В.И., Парыгин В.Н., Чирков Л.Е. Физические основы акустооптики. М. Радио и связь. 1985. 280 с.

3. Проклов В.В, Чесноков В.Н. Особенности многочастотного акустооптического взаимодействия в материалах с резонансной фотоупругостью //ФТТ. 1994. Т. 36. № 11. С. 3268-3279.

4. Гусев О.Б., Кулаков С.В., Разживин Б.П., Тигин Д.В. Оптическая обработка сигналов в реальном времени. М. Радио и связь. 1989. 136 с.

5. Физическая акустика. Т. 7. Под ред. Мэзона. М. Мир. 1974. 432с.

6. Нахмансон Г.С., Маньков П.Л. Особенности брэгговской дифракции когерентного оптиче-