УДК 546.41.185

УЛЬТРАДИСПЕРСНЫЕ ПОРОШКИ БИОСОВМЕСТИМОГО Са₁₀(PO₄)₆(OH)₂: СИНТЕЗ, ТЕРМООБРАБОТКА, СВОЙСТВА

© 2006 Н.А. Захаров*, Т.В. Беляевская*, А.Е. Чалых**, В.Т. Калинников*

^{*}Институт общей и неорганической химии им. Н.С. Курнакова РАН ^{**}Институт физической химии и электрохимии РАН

Поступила в редакцию 20.09.05

Изучено влияние условий синтеза на образование ультрадисперсных порошков гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ в ходе осаждения его из раствора. Определены основные физико-химические характеристики продуктов синтеза, исследовано влияние термообработки на их фазовый состав и морфологию, проведена оценка возможности использования полученных материалов в качестве костных имплантатов в медицине.

введение

Гидроксиапатит кальция $Ca_{10}(PO_4)_6(OH)_2$ (ГА) сходен по составу с неорганической компонентой костной и зубной тканей млекопитающих и используется в медицинской практике для изготовления имплантатов [1, 2]. Биосовместимость ГА делает его наиболее распространенным материалом для применения в медицине в качестве порошков, плотной и пористой керамики [3]. ГА, кроме того, нашел применение в хроматографии, в качестве газовых сенсоров и лазерных сред [4]. Невысокая прочность имплантатов на основе ГА при использовании in vivo [5], к сожалению, затрудняет их использование в условиях механического нагружения. В наибольшей степени в связи с этим распространено применение ГА в медицине в качестве покрытий металлических имплантатов, составной части композиционных материалов (например, ГА/полимер), гранул для заполнения полостей поврежденных тканей организма [1-3].

Свойства ГА, включая его биоактивность, биосовместимость, растворимость, спекаемость, возможность принимать необходимую форму при обработке, прочностные характеристики и характеристики адсорбции, могут в широких пределах варьироваться за счет изменения его состава (например, введением соответствующих примесей) либо гранулометрических характеристик ГА [1-3, 6]. В связи с этим актуально создание доступных методов синтеза ГА, позволяющих контролировать размеры его частиц, химический состав синтезированных продуктов и морфологические характеристики имплантатов.

Низкотемпературный синтез из растворов, проходящий в условиях низких температур, в наибольшей степени представляется доступным для управления перечисленными характеристиками продуктов синтеза. Путем незначительных изменений условий синтеза в водных растворах, суспензиях или гелях возможно существенное влияние на основные функциональные характеристики ГА [7-12]. Поскольку в условиях синтеза из раствора достижимо эффективное регулирование зародышеобразования, скорости роста кристаллов и условий образования требуемой фазы, возможна выработка стратегии создания материалов с заданными размерами частиц, морфологией и физикохимическими характеристиками, оптимальными для определенных условий применения.

В представленной работе изучено влияние двух реакций синтеза и термической обработки продуктов синтеза на их фазовый состав, кристаллографические и морфологические характеристики, обсуждена возможность использования полученных материалов в медицинской практике.

МЕТОДИКА ЭКСПЕРИМЕНТА

Порошкообразные образцы ГА были получены осаждением из водных растворов при комнатной температуре с использованием реакций

 $10CaCl_2 + 6(NH_4)_2HPO_4 + 8NH_4OH =$ = $Ca_{10}(PO_4)_6(OH)_2 + 20NH_4Cl + 6H_2O$ (1) (метод A) и (1) $3Ca(H_2PO_4)_2 + 7 CaO = Ca_{10}(PO_4)_6(OH)_2 + 5H_2O$ (2)

(метод Б).

В качестве исходных реактивов использовали CaCl₂, CaO, (NH₄)₂HPO₄, Ca(H₂PO₄)₂, NH₄OH квалификации «ОСЧ» и дистиллированную воду. Содержание исходных компонентов в растворе рассчитывалось из учета получения в ходе реакции стехиометрического ГА с соотношением Ca/P=1,667. Реакции в растворе проходили при комнатной температуре и постоянном перемешивании жидкости лепестком магнитной мешалки в продолжение 24 ч. В случае метода А к раствору CaCl, и аммиака в дистиллированной воде добавляли раствор (NH₁)₂HPO₄, затем дистиллированную воду (рН = 10-11). В случае метода Б проводили последовательное растворение CaO и Ca(H_2PO_4), в интенсивно перемешиваемой дистиллированной воде. Значение рН в растворе при этом изменялось от сильнощелочного до нейтрального, характеризующего полноту протекания процесса.

Растворы отстаивали в продолжение 1-2 суток, осадок промывали декантацией до pH=7 и высушивали при 100 °С (продукты синтеза А-ГА, Б-ГА). Выход продукта реакции для случаев А и Б составил соответственно 79% и 96%. Прокаливание продуктов синтеза А-ГА и Б-ГА проводили на воздухе при 900 °С (в течение 1 ч), скорости нагревания 10 град./мин и охлаждении вместе с печью (отожженные образцы АТ-ГА, БТ-ГА, соответственно).

В ходе синтеза контролировали значение рН в растворе, содержание кальция (комплексонометрический метод) и фосфора (весовой хинолинмолибдатный метод) в растворе [13].

Рентгеновские дифрактограммы получали с использованием автоматизированного дифрактометра Дрон-4 (Си-К_а излучение, графитовый монохроматор, управляющая программа EXPRESS). Для проведения рентгенофазового анализа (РФА) использовали программы РНАN и РНАN% [14] (модифицированный полнопрофильный анализ, оценка размеров блоков D_{hkl} и величин микродеформаций кристаллической решетки). Размеры блоков и величины остаточных микронапряжений $<\varepsilon^{2>1/2}$ вычисляли с учетом различной угловой зависимости физического уширения дифракционных линий: D_{hkl} ~ k λ/β_D соз Θ ; $<\varepsilon^{2>1/2} ~ \beta_{<\varepsilon}$ сtg Θ , где k – фактор формы, β_D , $\varepsilon_{<\varepsilon}$ – блочное и деформаци-

дифракции [14].

ИК спектры поглощения образцов измеряли в диапазоне 4000-400 см⁻¹ с использованием спектрофотометра Perkin-Elmer и объектов измерения в виде порошков, прессованных с КВг в форме дисков.

Морфологию образцов изучали с использованием сканирующего электронного микроскопа (СЭМ) CamScanS4.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Полученные в результате использования методов А и Б продукты реакции после высушивания представляли собой порошки белого цвета. По данным химического анализа для А-ГА и Б-ГА справедливо отношение Ca/P=1,68.

Присутствие в рентгеновских спектрах А-ГА, Б-ГА характерных групп линий в областях 2Θ 25, 32 и 50 град. (рис. 1, 2) позволяет сделать вывод об образовании в ходе синтеза ГА. Слабое разрешение линий рентгеновского спектра свидетельствует о низкой степени кристалличности порошков А-ГА, Б-ГА. По данным рентгеновского анализа диаметры блоков Коши А-ГА и Б-ГА практически совпадают

Рис. 1. Дифрактограммы продуктов синтеза по методу А до (1) и после (2) термической обработки

Рис. 2. Дифрактограммы продуктов синтеза по методу Б до (1) и после (2) термической обработки

(13,1 и 10,5 нм, соответственно) (табл. 1) и близки по значениям к размерам нанокристаллов ГА нативной кости [15]. Образующиеся в ходе синтеза фазы идентифицированы в гексагональной сингонии, пр.

Рис. 3. ИК спектры поглощения продуктов синтеза по методу A (a) и Б (б) до (1) и после (2) термической обработки

гр. Р6₃/т. Параметры элементарных ячеек ГА А-ГА и Б-ГА (табл. 1) находятся в удовлетворительном соответствии с данными JCPDS (№ 9-432) [16]. Увеличение значений параметра **а** элементарной ячейки ГА для А-ГА и Б-ГА по сравнению с та-

Таблица 1.

	-				-	(0.00.00	
	Без обжига			После обжига (900 °C, 1 ч)			
Метод			Размер			Размер	Посто-
синтеза	۰	•	блоков	•	•	блоков	ронняя
	a, A	с, А	Kouw	a,A	c,A	Kount	
			Коши,			коши,	фаза
			HM			HM	
A	9,4223	6,8880	13	9,4180	6,8793	215	-
Б	9,4359	6,8843	11	9,4154	<mark>6,</mark> 8797	126	β-Ca ₃ (PO ₄) ₂ , 23 вес. % a=10,4172; c=37,3445.
Данные JCPDS, № 9-432 [16]				9,418	6,884		

Кристаллографические характеристики (пр. гр. Р6₃/m) продуктов осаждения, полученных методами А и Б, до и после термической обработки

бличными можно, по-видимому, отнести за счет присутствия в них посторонних примесей (неполное прохождения реакции в растворе, присутствие ионов CO_3^{2-} и т.д.).

Уменьшение значений параметра **а** элементарной ячейки ГА после термической обработки в большей степени характерно для БТ-ГА (табл. 1). При этом в случае БТ-ГА происходит образование двухфазного композита на основе ГА и β -Са₃(PO₄)₂, где доля ТКФ превышает 20 вес. % (табл. 1,2). Фазы АТ-ГА и БТ-ГА обладают высокой степенью кристалличности, о чем свидетельствует хорошее разрешение линий рентгеновских спектров (рис. 1, 2).

Обжиг приводит к изменению гранулометрического состава синтезированных порошков. В большей степени рост кристаллов ГА характерен для продуктов реакции АТ-ГА. Диаметры блоков Коши БТ-ГА фосфатного композита приблизительно вдвое меньше таковых для АТ-ГА. Последнее, по-видимому, можно связать с уменьшением скорости реакции в твердой фазе при обжиге БТ-ГА за счет присутствия примеси ТКФ.

Спектры наноразмерных продуктов синтеза обоих типов характеризуются полосами поглощения основных структурных компонентов ГА (тетраэдров PO_4^{3-} и гидроксильных групп OH⁻), а также адсорбированной воды H_2O и карбонатных групп CO_3^{2-} (за счет поглощения CO_2 окружающей атмосферы при синтезе (рис. 3 (1)) [17, 18]. Мене развитым кристаллам отожженного БТ-ГА отвечают и менее интенсивные, чем в случае АТ-ГА, пики поглощения в области колебаний OH⁻ – и PO_4^{3-} – групп (3582 и 952 см⁻¹, соответственно) (рис. 3).

Таблица 2.

Химический состав продуктов синтеза по методу Б после термической обработки

	0	Ca	Р	Н
Атомные %	59,6	22,8	14,0	3,5
Весовые %	41,4	39,6	18,8	0,2

Рис. 4. ЭМ продуктов синтеза по методу Б до термической обработки

E	Термооб- работка	Структурные составляющие продуктов синтеза и их частоты (см ⁻¹) в						
Тип		колеоательном спектре						
реакции		PO ₄ ³⁻			OH-	H.O	CO.2-	
		vv_1	$\nu \nu_2$	$\nu \nu_3$	$\nu \nu_4$	011	1120	003
A	Нет	954	466	1041, 1095	563, 606	**	1627, 3441	867 (v ₂), 1410-1490 (v ₃) **
	900 ⁰ С, 1ч	954	466	1041, 1095	563, 606	650, 3583	1627, 3441	1996
Б	Нет	9 52	474	1039, 1093	561, 604		1638, 3441	876, 1420, 1474 ***
	900°С, 1ч	952	474	1039, 1094	561, 604	637, 3582	1626,3431	876 (ν ₂), 1496 (ν ₃)

Колебательные частоты продуктов синтеза фосфатов кальция

* Частотам 650 и 3583 см⁻¹ образцов, не подвергавшихся термообработке, соответствует плечо на интенсивном пике поглощения.

** Для образцов, не подвергавшихся термообработке, в области 1996 см⁻¹ имеет место размытая полоса поглощения.

Особенности спектральных характеристик продуктов синтеза А-ГА и Б-ГА определяются их низкой степенью кристалличности, значительной удельной поверхностью и наличием адсорбированной воды. В частности, полосы поглощения v_1 и v_2 тетраэдров PO₄³⁻ А-ГА и Б-ГА (области 952 и 470 см⁻¹) имеют неявно выраженный характер и увеличивают свою интенсивность после обжига (рис. 3, табл. 3). В ходе термической обработки происходит формирование полос поглощения групп ОН⁻ АТ-ГА и БТ-ГА (650, 3582 см⁻¹), практически отсутствующих у образцов, не прошедших термической обработки.

Развитая поверхность нанопорошков А-ГА и Б-ГА способствует адсорбции значительного количества воды (полосы поглощения H₂O в спектрах в области 1630 и 3000 – 3700 см⁻¹) (рис. 3, табл. 3,). В ходе термической обработки интенсивность этих полос поглощения уменьшается. В условиях применявшейся термической обработки полного удаления адсорбированной воды, однако, не происходит.

Характерные полосы поглощения карбонатной группы CO_3^{2-} продуктов синтеза тестируются в области частот 1490 – 1410 см⁻¹ для v_3 – моды и 870 для моды v_2 . Этот факт можно трактовать [17] как образование в ходе синтеза КГА (биоапатитов) типа В, когда карбонатные группы CO_3^{2-} замещают тетраэдры PO_4^{3-} . В соответствии с [18, 19], началу интенсивной потери CO_2 для синтезированных из

раствора ГА соответствует температура 500 °C. По данным ИК спектроскопии остатки карбонатных групп присутствуют после обжига только в случае БТ-ГА. Они проявляются в пиках слабой интенсивности в области частот 876 и 1496 см-1 (рис. 3 б)). Известно [20], что биологические апатиты содержат до 7,4 вес. % карбоната. В связи с этим можно предположить, что синтезированные композиционные материалы БТ-ГА, содержащие в своем составе КГА, будут представлять интерес для медицинского применения в качестве костных имплантатов. Присутствие в качестве примеси ТКФ в отожженных продуктах синтеза Б-ГА способствует увеличению растворимости имплантационного материала, улучшая характеристики его биосовместимости [21].

Рост кристаллов ГА и агломеризацию продуктов синтеза подтверждают результаты исследования образцов Б-ГА и БТ-ГА методом СЭМ (рис. 4, 5). Морфология порошков Б-ГА, не прошедших обжига, определяется наночастицами (~11 нм) ГА. Присутствие в продуктах синтеза Б-ГА образований большего размера методом СЭМ не фиксируется, что согласуется с результатами рентгеновского анализа (табл. 1).

Продукты обжига БТ-ГА характеризуются наличием зерен с формой, близкой к сферической, и размерами 100 – 200 нм. Причину агломеризации

Рис. 5. ЭМ продуктов синтеза по методу Б после термической обработки (900 °C, 1ч)

ГА в ходе термической обработки объясняют [21] образованием на активной поверхности первичных наночастиц зарядов за счет ОН⁻ групп ГА. Возникающая в случае БТ-ГА в ходе термической обработки примесная фаза ТКФ выступает, повидимому, в роли буферной среды. Она способствует уменьшению размеров зерен (~ 126 нм) композиционного материала БТ-ГА по сравнению с зернами АТ-ГА (~ 215 нм, табл. 1), затрудняя рост кристаллов ГА. Последнее свидетельствует о связи процессов агломеризации в нанопорошках фаз на основе ГА с их составом.

выводы

1. По данным рентгеновских исследований и ИК-спектроскопии в результате использования обоих (A, Б) приведенных методов синтеза из раствора (реакции (1) и (2), соответственно) имеет место образование гидроксиапатита кальция $Ca_{10}(PO_4)_6(OH)_2$ (ГА).

2. Высушенные на воздухе продукты реакций

(1) и (2) (А-ГА и Б-ГА, соответственно) представляют собой ультрадисперсные порошки ГА с приблизительно одинаковыми размерами частиц (10–13 нм), близкими к размерам нанокристаллов ГА биологических апатитов.

3. Продукты синтеза включают в свой состав ионы CO_3^{2-} , характерные для биологических карбонатгидроксиапатитов (КГА) (биоапатитов), содержание которых снижается в ходе термической обработки (900 °C, 1 ч). Методами ИК-спектроскопии карбонатные ионы в продуктах обжига тестируются только в случае БТ-ГА, позволяя сделать вывод об образовании в этом случае в ходе термической обработки КГА типа В (замещение ионами CO_3^{2-} тетраэдров PO_4^{3-}).

4. Термическая обработка продуктов синтеза Б-ГА приводит к образованию композиционного материала на основе ГА и β -Са₃(PO₄)₂ (трикальцийфосфата, ТКФ), в котором содержание ТКФ превышает 20 вес. %.

5. Морфология отожженных порошков АТ-ГА и БТ-ГА определяется образованием в ходе термиче-

ской обработки зерен с формой, близкой к сферической, и размерами порядка 100 – 200 нм. Меньший размер зерен композиционного материала БТ-ГА вызван, по-видимому, инкорпорированной примесной фазой ТКФ, играющей роль буферной среды и замедляющей рост кристаллов ГА.

6. Для практики медицинского использования полученных материалов особый интерес могут представлять:

 – ультрадисперсность полученных порошков биосовместимых материалов;

- образование КГА (биоапатита) в ходе синтеза;

 возможность синтеза с использованием описанных методов композиционных материалов на основе ГА и ТКФ.

Авторы признательны программам Президиума РАН «Фундаментальные науки – медицине» и «Направленный синтез веществ с заданными свойствами и создание функциональных материалов на их основе» за финансовую поддержку исследований.

СПИСОК ЛИТЕРАТУРЫ

1. *Aoki H*. Science and Medical Application of Hydroxyapatite. Japan. Tokyo. Japanese Association of Apatite Science. 1991. 210 p.

2. *Hench L.L.* // J. Amer. Ceram. Soc. 1991. V.74. № 7. P. 1487-1510.

3. Sachanek W., Yoshimura M. // J. Mater. Res. 1998. V. 13. № 6. P. 94-99.

4. Inorganic Phosphate Materials. Ed. T. Kanazawa. Tokyo and Amsterdam. Kodausha and Elsevier. 1980. P. 15-18.

5. *De With G., Van Dijk H.J.A., Hattu N. et al.* // J. Mater. Sci. 1981. V. 16. № 4. P. 1592-1596.

6. *Chang M. C., Ko C., Douglas W. H.* // Biomaterials. 2003. V. 24. № 11. P. 2853-2862.

7. Byrappa K., Yoshimura M., Handbook of Hydrothermal Technology. New Jersey. William

Andrews Publishing. LLC/Noyes Publications. 2001. 350 p.

8. *Harries J.E., Hukins D.W.L., Holts C. et. al.* // J. Cryst. Growth // 1987. V. 84. № 7. P. 563-570.

9. Arends J., Christoffersen J., Christoffersen M.R. et. al. // J. Cryst. Growth // 1987. V. 84. № 7. P. 515-532.

10. *Lerner E., Azoury R., Sarig S.* // J. Cryst. Growth // 1989. V. 94. № 3. P. 725-530.

11. Cerreta M.K., Berglund K.A. // J. Cryst. Growth // 1987. V. 84. № 7. P. 577-588

12. Zakharov N.A., Polunina I.A., Polunin K.E. // Inorganic Materials. 2004. V. 40. № 6. P. 641-648.

13. Шварценбах Г., Флашка Г. Комплексонометрическое титрование. М. Химия, 1970. С. 172.

14. Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронноптический анализ. М. МИСиС, 2002. 360 с.

15. Захаров Н.А., Ежова Ж.А., Коваль Е.М., Калинников В.Т., Чалых А.В. // Неорган. материалы. 2005. Т. 41. № 5. С.1-8.

16. Powder diffraction file (inorganic phases). Joint Committee on Powder Diffraction Standards (JCPDS) File № 9-432, International Centre of Diffraction Data, Newton Square, PA, 1980.

17. *LeGeros R.Z.* Calcium Phosphate in Oral Biology and Medicine. Switzeland. Basel. Karger AG. 1991. 221 p.

18. *Elliott J.C.* Structure and Chemistry of the Apatites and Other Calcium Ortophosphates. Amsterdam. Elsevier. 1994. 150 p.

19. Suchanek W.L., Shuk P., Byrappa K. et al. // Biomaterials. 2002. V. 23. № 5. P. 699-710.

20. *Swisher S.D.* Surfactant Biodegradation. New York. Marcle Dekker Inc. 1970. 250 p.

21. *Ramachandra Rao R., Roopa H.N., Kannan T.S.* // J. Mater. Sci.: Mater. Med. 1977. V. 511. № 3. P. 511-518.