УДК: 621.315:612.6

КАТАЛИТИЧЕСКОЕ ПЛАЗМОХИМИЧЕСКОЕ ТРАВЛЕНИЕ КВАРЦА

© 2005 А.Ю. Дикарев*, Ю.И. Дикарев*, И.С. Суровцев**, С.М. Цветков*

* Воронежский государственный университет ** Воронежский государственный архитектурно-строительный университет

Поступила в редакцию: 13.10.04

Исследованы зависимости каталитического плазмохимического травления пьезокварца под пленкой серебра во фторсодержащей плазме. Получены аномально высокие скорости обработки (до 2,5 мкм/с). Методом актинометрии определено влияние Ag, Pb, Sn, Cu, Al и Ni на изменение концентрации радикалов фтора в реакционной камере установки. При помощи масс-спектрометрии изучен состав продуктов каталитического травления пьезокварца и подтверждено ускорение образования фторсодержащих частиц в плазме в присутствии катализатора. Предложена физико-химическая модель каталитического плазмохимического травления кварца под слоем серебра.

введение

Хотя плазмохимическое травление (ПХТ) является наиболее изученным из всех известных «сухих» методов обработки материалов, оно не всегда устраивает потребителей по производительности технологических процессов. Особенно это касается травления на глубину в десятки и сотни микрон, например, пьезокварца. Решение задачи повышения скоростей травления технологической оптимизацией процесса не всегда эффективно и, как правило, происходит при увеличении энергии электронов и ионов. При этом возрастает вклад не только радиационного стимулирования химических реакций, но происходит и образование дефектов в обрабатываемых структурах [1]. Авторами настоящей работы разработан способ повышения скоростей травления за счет каталитической активации процессов ПХТ без дополнительных энергетических воздействий на поверхность обрабатываемых материалов [2, 3].

Исследованы закономерности каталитического плазмохимического травления (КПХТ) материалов под плёнкой серебра. Процесс назван нами "негативным", так как в этом способе ускоренное травление материала происходит только под плёнкой серебра, а не на открытых участках. Метод позволяет осуществлять высокоскоростное травление кварца на глубину в сотни и тысячи мкм.

МЕТОДИКА ЭКСПЕРИМЕНТА

Эксперименты проводились на установке ПХТ с реакционно-разрядной камерой (РРК) ВЧ диодного типа, изготовленной из кварцевой трубы с внутренним диаметром 120 мм и высотой 100 мм. Обрабатываемые пластины размещались на заземлённом металлическом столе-электроде, установленном в основании РРК. Частота ВЧ генератора составляла 13,56 МГц. Плотность мощности в разряде (W) и давление (P) изменялись в диапазоне (1—5) Вт · см⁻² и (10—100) Па, соответственно. Рабочими газами служили SF₆, CF₄ и их смеси с О₂. В качестве образцов использовались чистые и окисленные пластины Si, пластины пьезокварца У-среза и пластины плавленного кварца с нанесенными на их поверхность полосками из толщиной (20-600) нм. Летучие продукты Ag реакций определялись с помощью времяпролётного масс-спектрометра МСХ-6. Фазовый анализ поверхностных слоёв после КПХТ проводился на рентгенодифрактометре ДРОН-3. Изменение элементного состава пленки катализатора в процессе травления определяли методом времяпролетной масс-спектрометрии с лазерным возбуждением ионной пробы на установке ЛАММА-1000. Для определения относительной концентрации атомов фтора $(n_{\rm F})$ в разряде использовалась актинометрическая методика [4], реализованная на базе спектрального вычислительного комплекса КСВУ-23М.

Актинометрической добавкой к фторсодержащим газам служил Ar, доля которого в объеме смеси составляла 3%. Контролировались относительные интенсивности линий эмиссионного спектра излучения атомов F (703,7 нм) и Ar (750,3 нм).

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены характерные зависимости изменения глубины травления кварца под плёнкой серебра от времени обработки в плазме SF₆. Видно, что этот процесс имеет индукционный период, в течение которого плёнка маскирует травление кварца под собой. За время этого периода пленка меняет цвет на светлокоричневый, становится пористой, увеличивается в весе и толщине. Травление же открытых участков кварца протекало обычным образом со скоростями 10—30 нм · с⁻¹. По истечении индукционного периода скорость травления кварца под серебром скачкообразно возрастала. Окончание этого периода и начало травления кварца под плёнкой серебра регистрировалось по резкому возрастанию интенсивности пика масс-спектра с m/e = 85 а.е.м. (SiF₃⁺), отражающего изменение концентрации SiF, в РРК. Получено, что длительность индукционного периода зависит от толщины плёнки серебра, температуры обрабатываемой поверхности, состава газовой среды в РРК, технологических режимов обработки и других факторов, оказывающих влияние на концентрацию

Рис. 1. Зависимость глубины травления открытого кварца (1) и под слоем Ag (2—4) от времени обработки в плазме SF₆. P = 67 (1, 2, 3); 93 (4) Па. W = 300 (2); 400 (1, 3, 4) Вт

и энергию химически активных частиц в плазме. Фазовый анализ пористого слоя, образованного в течение индукционного периода на поверхности серебра, показал наличие в нём соединений серебра с фтором (AgF) и кислородом (Ag,O).

Установлены закономерности влияния физических, химических и технологических факторов на скорость и качество КПХТ. Получено, что эти зависимости имеют такой же характер, как и в обычном ПХТ, т.е. скорости травления изменяются пропорционально изменению скорости генерации химически активных частиц (ХАЧ) в РРК [5].

Как и для обычного ПХТ, скорости каталитического травления в плазме CF_4 были значительно ниже, чем в плазме SF_6 . При этом в несколько раз удлинялся индукционный период. Все это дополнительно подтверждает, что изменение скоростей травления кварца под пленкой серебра пропорционально изменению концентрации ХАЧ в РРК.

Известно, что небольшие добавки к катализатору могут как замедлять (каталитические яды), так и ускорять (промотеры) действие катализатора. Особенно интересно действие последних, так как даже совсем незначительные добавки этих веществ к катализатору значительно ускоряют каталитические реакции. В качестве промотеров часто применяют Fe, Al, их окислы, SiO₂. Так как эти и другие вещества, входящие в состав электродов и внутрикамерной оснастки PPK, распыляются в процессах ПХТ и загрязняют обрабатываемые поверхности, то представляло интерес изучение элементного состава пленки, активирующей процесс травления.

Был проведен элементный анализ остатка пленки серебра толщиной 0,2 мкм после травления под ней кристаллического пьезокварца в плазме SF_6 на глубину 75 мкм. Кроме серебра в ионной пробе всегда регистрировались фтор, кислород, сера, кремний, а также элементы, входящие в состав материала электродов (Fe, Cr, Ni). Последние полностью исчезали из ионной пробы при экранировке электродов тонкими кварцевыми дисками.

Сравнение скоростей травления кварца без экранировки электродов и с их экранировкой показало лишь незначительное отличие, которое можно объяснить изменением импеданса РРК и эффектом загрузки ПХТ.

Методом актинометрии определено влияние внесения в РРК выявленных катализаторов (Ag, Pb, Sn) на изменение концентрации радикалов фтора n_{r} в разряде. Кроме того, с целью возможного рас-

Рис. 2. Влияние некоторых материалов на изменение n_F в PPK (рабочий газ — SF₆; P = 102 Па): 1 — камера с Si; 2 — пустая камера; 3 — камера с SiO₂; 4 — камера с SiO₂ и Ag; 5 — камера с SiO₂ (после извлечения Ag)

ширения класса катализаторов, изучалось влияние некоторых других материалов (Cu, Ni, Al).

На рис. 2 представлены полученные зависимости изменения n_F в разряде SF₆ в присутствии таких материалов, как SiO₂, Si или Ag. Образец из SiO₂ представлял собой кварцевый диск \emptyset 60 мм и толщиной 6 мм. Диск размещался на нижнем электроде PPK. В дальнейшем этот диск использовался в качестве столика для размещения образцов из других материалов. Из этих зависимостей видно, что введение Si в PPK заметно снижает n_F , а SiO₂ практически не оказывает влияния. Такое поведение вполне прогнозируемо и объясняется более высокими скоростями взаимодействия Si с радикалами F[•] и, следовательно, большими скоростями снижения их концентрации в PPK.

Интересные результаты получены при использовании Ag (рис. 2 кривые 4 и 5). Видно, что введение серебра на подставке из кварца увеличивает более чем в два раза интенсивность линии $\lambda = 70$ -3,7 нм, показывающий изменение n_F . Это уже было объяснено выше. Но здесь не менее важным результатом является то, что еще большее увеличение n_F вызывают следы серебросодержащих фторированных соединений, остающихся в РРК

на кварцевой подставке и стенках камеры после удаления из нее Ag. Это дополнительно подтверждает, что основным катализатором является не собственно серебро, а его фторид. Меньший рост n_F в присутствии толстого слоя серебра объясняется совместным действием механизма дополнительной генерации радикалов фтора в процессах диссоциативной хемосорбции и их расходом на фторирование глубинных слоев серебра.

Качественно такое же влияние на изменение n_F оказывал и свинец. Но это влияние было в два раза слабее, чем у серебра. Увеличение n_F на (20—25)% происходило и при внесении в РРК пластины из олова, а Си влияла лишь незначительно. Алюминий и никель, наоборот, снижали на (15—20)% концентрацию n_F .

Увеличение концентрации радикалов фтора в присутствии серебра было подтверждено и посредством масс-спектрометрии. Это хорошо видно из сравнения масс-спектров продуктов травления SiO₂ без катализатора и с катализатором из серебра (рис. 3). На этом рисунке для срав-

Рис. 3. Масс-спектры продуктов травления кварца (δ , e) и Si (a) в плазме SF₆ без катализатора (a, δ) и с катализатором (e). Давление SF₆ = 60 Па; мощность = 400 Вт

нения приведен масс-спектр продуктов травления Si в этом же газе (SF_6) и в той же PPK. Значения интенсивностей пиков компонентов плазмы, приведенные на рисунке, даны относительно максимального пика SiF₃⁺, полученного в масс-спектре продуктов травления кварца под серебром.

Из сравнения спектров, приведенных на рис. За и 3б видно, что интенсивность пика m/e = 19, характеризующая концентрацию радикалов фтора, в присутствии катализатора увеличивалась в 4-5 раз. Кроме того, в несколько раз возрастала интенсивность пика иона SiF₃⁺, росли интенсивности пиков, характеризующих концентрацию серосодержащих фрагментов и кислорода. Увеличение концентрации кислорода можно объяснить его образованием в реакциях:

$$\operatorname{SiO}_2 + F^{\bullet} \rightarrow \operatorname{SiF}_4^{\uparrow} + \operatorname{O}_2^{\uparrow}.$$

Значительное возрастание пика m/e = 28может свидетельствовать о появлении ионов Si⁺ в разряде. Подтверждением этого предположения могут служить случаи высаживания кремния в виде мелкодисперсного порошка на обрабатываемые пластины или поверхности внутрикамерной оснастки.

Увеличение же интенсивностей серосодержащих пиков можно объяснить тем, что катализатор К приводит не только к ускорению реакции взаимодействия радикалов фтора и, возможно, SF₆ с кремнием:

$$Si + F \xrightarrow{\Pi OB \cdot |K|} SiF_4^{\uparrow},$$

но и к увеличению скорости диссоциации SF₆ и фрагментов его распада. Так как заметного увеличения пиков SF_x^{+} в масс-спектре каталитического травления не происходит, а концентрация фтора растет, то разумно предположить, что диссоциация SF_6 и его фрагментов идет на серу и фтор:

$$SF_{x} \xrightarrow{\Pi OB |K|} S + xF^{\bullet}$$

Резкое увеличение интенсивности пика m/e =85 показывало окончание индукционного периода и начало каталитического травления кварца. Интенсивность этого пика в процессе каталитического травления была заметно выше, чем даже в масс-спектре продуктов травления Si.

Полученные результаты хорошо согласуются с выводами работы [6] по изучению влияния материалов маски на скорость генерации фтора на их поверхности, в которой показано, что на поверхности меди и серебра происходит каталитическая

активация процессов разложения молекул CF₄ и локальное увеличение концентрации радикалов фтора.

Проведенные масс-спектрометрические исследования также показали, что изменение скоростей травления кварца под пленкой серебра имеет такой же характер, как и изменение концентрации ХАЧ в плазме. Катализатор практически не расходуется в процессах химического взаимодействия. Некоторое «истощение» активатора при травлении на значительную глубину, видимо, связано с физическим распылением серебра и его соединений. Известно, что эти материалы имеют наиболее высокие значения коэффициентов распыления ионной бомбардировкой.

Подтверждением перераспыления серебра на стенки РРК в процессе ПХТ может служить его активирующее действие, наблюдаемое при последующих циклах обычного травления материалов в той же камере. При этом методом лазерной масс-спектрометрии на обработанных поверхностях серебро детектировалось после проведения десятков циклов травления, и лишь тщательная химическая отмывка кварцевой трубы и элементов внутрикамерной оснастки позволяла полностью удалить его из РРК.

Дальнейшие исследования показали, что серебро активирует не только плазмохимическое, но и радикальное травление кварца и кремния. Причем оказалось, что активация травления кремния, как при плазмохимическом, так и при радикальном методах меньше, чем кварца. Обычно различия в скоростях обработки этих материалов во фторсодержащей плазме объясняют разной вероятностью взаимодействия радикалов фтора с ними. В условиях ПХТ эта вероятность составляет ≈ 2·10⁻³ для кремния [7], а для SiO₂ она в 50 раз ниже. При радикальном травлении разница еще более возрастает. Присутствие же катализатора на поверхности SiO₂ и кремния резко увеличивает и сближает скорости травления этих материалов.

Известно так же, что в химизме гетерогенного катализа важнейшую роль играют адсорбционные процессы, благодаря которым на поверхности катализатора происходит увеличение концентрации химически активных частиц. Видимо и в данном случае на поверхности серебра и фторидов серебра имеет место каталитическая диссоциативная адсорбция молекул SF₆ и CF₄, в результате которой происходит их разложение на фторсодержащие ХАЧ, что подтверждено масс-спектрометрически и хорошо согласуется с данными работы [6]. Авторы этой работы достаточно подробно изучали влияние металлических масок из A1, Cr, Cu и Ag на скорость реактивного ионно-плазменного травления и достаточно убедительно доказали, что все эти металлы (и особенно последние два) обладают каталитической способностью при разложении на их поверхностях молекул СГ₄. Причем активно действующим катализатором разложения этих молекул являются не сами металлы, а их фториды. При травлении кремния через маски из этих материалов происходило локальное увеличение концентрации химически активных частиц в непосредственной близости от места взаимодействия, что приводило к увеличению в 2-5 раз скоростей травления открытых участков и вблизи края маски.

Безусловно этот механизм действует и в нашем случае. Однако, при травлении кварца под слоем серебра помимо этого, видимо, более важным фактором увеличения скоростей обработки в присутствии катализатора является повышение вероятности химического взаимодействия фторсодержащих частиц из плазмы, а также частиц, образованных на поверхности и в порах катализатора, с кварцем. По-видимому, и в этом случае активно действующим катализатором служит не собственно серебро, а его фториды.

На основании проведенных исследований возможный механизм каталитического плазмохимического травления можно представить следующим образом. В течение индукционного периода происходит взаимодействие фторсодержащих радикалов с поверхностью серебра с образованием фторидов. Процесс фторирования серебра продолжается в течение всего индукционного периода. Образующиеся фториды серебра представляют собой рыхлую и пористую пленку, легко проницаемую для химически активных частиц.

Разрыхленный активированный фторид, достигая поверхности кварца и диссоциируя при повышенной температуре, создает высокую концентрацию радикалов фтора на границе кварцкатализатор. Это и обеспечивает повышенную скорость травления кварца под пленкой Ag. Восстановленное серебро, обладая более развитой поверхностью, вновь фторируется, диссоциирует и поставляет фтор для травления. В качестве фторсодержащих агентов могут выступать не только молекулы SF₆, но и фрагменты их диссоциации SF_x. Циклическая регенерация серебра и дает каталитический эффект, обеспечивающий ускоренный транспорт ХАЧ к обрабатываемой поверхности кварца. Здесь серебро (или фторид серебра) выступает в роли классического катализатора и не расходуется в процессе каталитического травления. Своеобразие этого варианта гетерогенного катализа состоит в том, что в данном случае катализатор нанесен непосредственно на саму поверхность, подлежащую травлению, и первое время маскирует ее.

И в заключение необходимо также отметить, что каталитическое плазмохимическое травление имеет не только экономическое, но и экологическое значение, так как при подобном травлении расходуется и выбрасывается в атмосферу значительно меньшее количество фторсодержащих газов. Разработанный способ рекомендован для травления глубокого рельефа (до 2—3 мм) в пьезокварце при создании новых приборов функциональной электроники и микросистемной техники.

СПИСОК ЛИТЕРАТУРЫ

1. Ивановский Г.Ф., Петров В.И. Ионно-плазменная обработка материалов. М.: Радио и связь. 1986. 232 с.

2. Дикарев Ю.И., Цветков С.М., Суровцев И.С. // Изв. вузов. Электроника. 1997. № 2. С. 39—43.

3. Дикарев Ю.И., Цветков С.М., Суровцев И.С. // Изв. вузов. Электроника. 2001. № 6. С. 23—30.

4. *Coburn J., Chen M.* // J. Appl. Phys. 1980. V. 51. № 6. C. 3134—3136.

5. Дикарев Ю.И., Светцов В.И. // Электронная техника. Сер. 6. Материалы. 1986. Вып. 5(216). С. 34—37.

6. *Fedynyshum J.H., Grynkewich G.W.* // J. Electrochem. Soc. 1987. V. 136. № 6. P. 1789—1804.

7. *Suzuki K.* // J. Electrochem. Soc. 1979. V. 186. № 6. P. 1024—1028.