УДК: 541.13; 541.138.2

ОКИСЛЕНИЕ КРИСТАЛЛОВ ФОСФИДА ИНДИЯ С ПРЕДВАРИТЕЛЬНОЙ МАГНИТНОЙ ОБРАБОТКОЙ

© 2005 Г.В. Семенова, О.Н. Шумская, А.В. Татаринцев, Э.А. Долгополова, М.А. Дронов, М.Н. Левин

Воронежский государственный университет

Поступила в редакцию: 17.05.05

На примере фосфида индия показана возможность использования обработки полупроводниковых материалов импульсными магнитными полями для увеличения скорости химических реакций, протекающих на их поверхности.

введение

Ранее сообщалось о долговременных немонотонных изменениях структуры и физических свойств полупроводниковых кристаллов в результате кратковременного воздействия импульсных магнитных полей (ИМП) [1, 2]. Высокую чувствительность к воздействию поля проявляют приповерхностные слои полупроводников. В кремнии слабые магнитные поля индуцируют эффекты обогащения приповерхностных слоев кислородом, растворенным в объеме кристалла [3], при этом существенно изменяются сорбционные свойства поверхнос ти [4, 5]. При исследовании кристаллов Sb—As обнаружен эффект долговременного перераспределения компонентов твердого раствора при комнатной температуре после кратковременного воздействия ИМП, включающий этапы обогащения поверхности кристалла сурьмой с образованием ею кластеров, распад кластеров сурьмы и постепенное снижение ее содержания на поверхности [6]. В [7] при исследовании влияния импульсного магнитного поля на низко-дислокационные нелегированные полупроводниковые кристаллы АШВ^V установлено, что на первой стадии имеет место обогащение поверхности кристалла металлическим компонентом третьей группы с выделением его в отдельные кластеры.

Очевидно, изменение фазового, структурного и термодинамического состояния поверхности кристаллов в результате воздействия ИМП может существенно повлиять на ее реакционную способность, кинетику твердофазных процессов с их участием. В настоящей работе представлены результаты исследований влияния предварительной обработки импульсным магнитным полем кристаллов фосфида индия на кинетику их низкотемпературного химического окисления.

МЕТОДИКА ЭКСПЕРИМЕНТА

Эксперименты проводились на полированных пластинах монокристаллического фосфида индия *п*-типа проводимости с ориентацией <111> и концентрацией носителей 10¹⁶ ст⁻³. Использовался известный метод [8] химического окисления фосфида индия при низкой температуре, позволяющий получать однородные диэлектрические пленки за счет исключения образования дополнительных термических дефектов. Окисление проводилось в концентрированной азотной кислоте в присутствии йода по методике, описанной в [8]. Предварительная обработка пластин перед окислением включала травление полирующим травителем состава $H_2SO_4: H_2O_2: H_2O = 3: 1: 1$ в течение 20 min, промывание дистиллированной водой, обработку 0,1 % раствором соляной кислоты, окончательное промывание дистиллированной водой и сушку.

После химической обработки пластины экспериментальной партии подвергались воздействию импульсного магнитного поля. Воздействие ИМП осуществлялось серией 1500 симметричных треугольных импульсов с амплитудой B = 0,3 Т, длительностью $\tau = 4 \cdot 10^{-5}$ s и частотой следования f = 50 Hz. Импульсы магнитного поля формировались разрядами батареи конденсаторов через низко-индуктивный соленоид. Обработка проводилась при комнатной температуре в атмосфере воздуха.

Экспериментальные образцы хранились при комнатной температуре в инертной среде вместе с контрольными образцами, не подвергавшимися воздействию ИМП. Время между обработкой ИМП и окислением варьировалось от 1 до 20 суток.

Исследование топологии поверхности пластин фосфида индия, обработанных ИМП, проводилось в атомном силовом микроскопе (ACM) «FemtoScan 001» лаборатории наноскопии и нанотехнологии ЦКПНО Воронежского госуниверситета, изготовленном в центре перспективных технологий МГУ.

Окисление экспериментальных и контрольных образцов проводилось одновременно. Пластины фосфида индия на кварцевых держателях помещались в химический стакан с предварительно нагретым рабочим раствором, который готовили путем растворения навески йода (0,02 gm) в концентрированной азотной кислоте непосредственно перед экспериментом. Окисление проводили в термостатированных условиях при температуре 313 К. Время экспозиции в окисляющей среде изменялось от 5 до 25 min. После окисления пластины промывались дистиллированной водой и высушивались. Толщину выращенных слоев определяли методом лазерной эллипсометрии на эллипсометре ЛЭФ-3М, погрешность показаний при определении углов поворота поляризатора, компенсатора, анализатора и плеч прибора составляла ±1 min.

Рентгенофазовый анализ полученных пленок проводился на дифрактометре ДРОН-3 на Cu_{ка} излучении ($\lambda = 1,54178$ nm). Дифрактограммы измерялись в режиме автоматического углового перемещения образца с шагом 0,1°, временем экспозиции 3 s в каждой точке и вращением образца в собственной плоскости. Рефлексы на дифрактограммах идентифицировались, определив межплоскостные расстояния по уравнению Вульфа-Брегга, и сравнив полученные значения с известными табличными данными ASTM [9].

Для оценки диэлектрической прочности полученных пленок были сформированы конденсаторные структуры. Для этого на их поверхность через молибденовую маску методом термического испарения в вакууме не хуже 10⁻³ Ра без специальных термообработок напылялись алюминиевые электроды диаметром 0,8 mm и толщиной ~ 500 nm. Омический контакт к подложке создавался механическим нанесением эвтектической смеси индий-галлий на тыльную сторону образца.

Рис. 1. Зависимости толщины оксидной пленки от времени окисления: *1* — без воздействия ИМП; *2* — через 5 суток после ИМП-воздействия

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

На рис. 1 представлены изотермы окисления фосфида индия. Полученные зависимости роста оксидной пленки показали, что процесс в целом можно описать известным формальным кинетическим уравнением [8]:

$$d = (kt)^n, \tag{1}$$

где d — прирост толщины оксидного слоя, nm; t — время экспозиции пластин в окисляющей среде, min; k — константа процесса nm^{1/n} · min⁻¹. Значение показателя n в уравнении (1) для контрольных и экспериментальных образцов одинаково и составляет $\approx 0,5$. Неизменность показателя n для обеих серий образцов позволяет утверждать, что предварительная обработка ИМП не влияет на механизм протекания наблюдаемых процессов.

По тангенсу угла наклона кинетических кривых роста оксидных слоев (рис. 1), построенных в координатах d^2 -*t*, были оценены константы скоростей химических реакций, протекающих на поверхностях обработанных и контрольных пластин. Для пластин, подвергнутых обработке ИМП, константа скорости химической реакции составляет (978 ± 92) nm^{1/2} · min⁻¹, что выше константы скорости окисления контрольных пластин (780 ± 87) nm^{1/2} · min⁻¹.

Рис. 2 (кривая 1) демонстрирует немонотонность эффекта влияния обработки импульсным магнитным полем на интенсификацию процесса химического окисления фосфида индия. Наблюдаемая немонотонность подобна обнару-

Рис. 2. Зависимости от времени, прошедшего после ИМП-обработки подложки: 1 — разности толщин Δd оксидных пленок экспериментальных и контрольных образцов; 2 — напряженности электрического поля E в пленке, при которой через поперечное сечение конденсатора протекает ток 10^{-6} А. Время окисления 25 min.

женному ранее эффекту изменения адсорбционной способности других типов полупроводниковых кристаллов [5, 10]. Максимум влияния достигается на 5—6 сутки после воздействия ИМП, затем эффект уменьшается, снижаясь практически до нуля через 20 суток. Зависимость диэлектрической прочности оксидных пленок (кривая 2) также является немонотонной и коррелирует с зависимостью, отражающей эффект интенсификации процесса окисления.

В результате проведения рентгенофазового анализа установлено, что пленки контрольной и экспериментальной серий являются многофазными и имеют практически одинаковый фазовый состав (рис. 3). Основными фазами являются In_2O_3 (преимущественно гексагональной модификации) и P_2O_5 различных модификаций. Полученный результат позволяет сделать вывод об отсутствии влияния предварительной обработки подложек фосфида индия импульсным магнитным полем на фазовый состав оксидных пленок, сформированных на их поверхности.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Эффект повышения скорости химического окисления фосфида индия в результате предварительной обработки кристалла импульсным магнитным полем может быть объяснен в рамках предложенного ранее механизма [7], ответственного за возникновение диффузионной неустойчивости в кристаллах полупроводниковых соединений А^ШВ^V.

Согласно [7], основным фактором, ответственным за чувствительность кристаллов $A^{III}B^{V}$ к ИМП, считается наличие комплексов собственных точеч-

ных дефектов, способных распадаться под слабым магнитным воздействием. Возможный механизм распада дефектных комплексов в результате воздействия ИМП был недавно предложен в [11]. Возникновение собственных дефектов в кристаллах фосфида индия обусловлено, прежде всего, содержанием избыточного количества вакансий

Рис. 3. Дифрактограммы оксидных пленок, полученных на контрольном (a) и предварительно обработанном ИМП образце (b)

Рис. 4. Топология поверхности кристалла InP и соответствующие профили поперечных сечений до воздействия ИМП (*a*) и через 5 суток после воздействия (*b*).

летучего компонента — фосфора, способных к формированию комплексов с антиструктурными дефектами InP. На первом этапе ИМП-индуцированный распад этих дефектных комплексов в глубине кристалла сопровождается появлением подвижных вакансий фосфора, диффундирующих из объема кристалла к поверхности, как естественному стоку для точечных дефектов. Диффузия вакансий фосфора к поверхности эквивалентна «залечиванию» их в объеме кристалла атомами фосфора, диффундирующими навстречу своим вакансиям с поверхности. Уход атомов фосфора в глубь кристалла приводит к обогащению приповерхностного слоя вторым компонентом — индием. Следствием этого является изменение топологии поверхности и характера ее рельефа (рис. 4), увеличение количества структурных дефектов в приповерхностных слоях и ее активация, что, в конечном итоге, приводит к интенсификации процессов окисления. При этом увеличение скорости роста оксидной пленки сопровождается ростом ее дефектности, что проявляется в ухудшении ее диэлектрической прочности (рис. 2).

На втором этапе начинается процесс диффузии атомов индия из областей с повышенной концентрацией на поверхности в глубь кристалла и установление распределения компонентов, более равномерного по сравнению с исходным, результатом чего является уменьшение дефектности кристаллов. Этот процесс сопровождается снижением реакционной способности поверхности и уменьшением дефектности оксидных пленок, что проявляется в улучшении их диэлектрической прочности. При этом качество пленок, полученных на предварительно обработанных импульсным магнитным полем подложках, оказывается выше, чем у контрольных образцов.

Таким образом, результаты проведенного исследования свидетельствуют о том, что воздействие слабого импульсного магнитного поля приводит к повышению химической активности поверхности полупроводников. Обнаруженный эффект может быть использован для дальнейшего совершенствования технологических процессов получения различных покрытий на поверхности полупроводниковых кристаллов.

СПИСОК ЛИТЕРАТУРЫ

1. Кведер В.В., Осипьян Ю.А., Шалынин А.И. // ЖЭТФ. 1982. Т. 83. № 2. С. 699—703.

2. Levin M.N., Zon B.A. // Phys. Lett. A. 1999. V. 260. P. 386—390.

3. Левин М.Н., Зон Б.А. // ЖЭТФ. 1997. Т. 111. № 4. С. 1373—1397.

4. Левин М.Н., Семенов В.Н., Наумов А.В. // Письма в ЖТФ. 2001. Т. 27. № 7. С. 35—39.

5. Левин М.Н., Татаринцев А.В., Косцова О.А. и др. // ЖТФ. 2003. Т. 73. № 10. С. 85—87.

6. Левин М.Н., Семенова Г.В., Сушкова Т.П. и др. // ФТТ. 2003. Т. 45. № 4. С. 609—612.

7. Левин М.Н., Семенова Г.В., Сушкова Т.П. // ДАН. Физика. 2003. Т. 388. № 1. С. 11—13.

8. *Сошников И.М., Дементьев Н.Н. //* Химия: Теория и технология 1999. № 2. С. 43—48.

9. Уманский Я.С., Скаков Ю.А., Иванов А.Н. и др. Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия. 1982. 632 с.

10. Левин М.Н., Татаринцев А.В., Битюцкая Л.А. и др. // Конденсированные среды и межфазные границы. 2003. Т. 5. № 2. С. 213—215.

11. Belyavsky V.I, Levin M.N. // Phys. Rev. B. 2004. V. 70. P. 104101.